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Executive Summary 
 

This report represent a half years worth of hard work and dedication to our team’s collective design 
values. Our design is distinguished by distributing the game play to two robots, retriever-bot (Rbot) and 
gameplaying-bot (Gbot), and the sophisticated navigation system that links the two together. In this 
report, we present our design process and iterations that resulted in the refinements and details 
necessary for interacting two robots in addition to playing a game with randomized elements requiring 
robust navigation. Specific topics include the PID velocity controlled navigation system supplemented by 
line correct, the decision to use off the shelf chassis kits, and the results of extensive testing of sensors 
to detect the game state. In addition, we provide details about the materials, sensors, programming, 
and methods of construction used.  
 
In the implementation section, we detail the logic behind our robot’s behaviour, as well as the physical 
mechanisms of the electromechanical system. Topics in this section include the tests conducted to find 
the best sensors, a graphical map user interface for arbitrary waypoint setting via serial writing and 
debugging, and physical debugging frameworks, including a mockup of the game board and hoppers. 
 
In project management, we highlight the difference in expected time to completion relative to the 
actual time taken for integration tasks. A table then summarizes the work completed by each role, as 
well as the crossover of responsibilities among the different roles. Then we justify our total cost of 
$239.23 with a bill of materials in appendix B. 
 

To conclude, we reflect upon the lessons learned from undertaking a 2 robot design, and consider the 

unnecessary constraint we set on our robots by using a off the shelf chassis, and discuss methods to 

avoid such pitfalls in the future. 

 

  



3 |  P a g e
 

Table of Contents 
Executive Summary ....................................................................................................................................... 2 

Symbols and Abbreviations ........................................................................................................................... 5 

1. Design Process .......................................................................................................................................... 6 

1.1 Gameplay Strategy ........................................................................................................................ 6 

1.2 Our Design ........................................................................................................................................... 7 

1.3 Design Values ...................................................................................................................................... 7 

1.4 Performance Metrics .......................................................................................................................... 7 

1.5 Background Research .......................................................................................................................... 8 

1.6 Conceptualization ............................................................................................................................. 11 

1.6.1 Divergence Process .................................................................................................................... 11 

1.6.2 Convergent and Decision Making Process ................................................................................. 11 

2. Technical Description .............................................................................................................................. 11 

2.1 System Level Description .................................................................................................................. 12 

2.2 Full Operating Procedure .................................................................................................................. 14 

2.2.1 Pre-flight checklists .................................................................................................................... 14 

2.2.2 Post-Flight Checklist ................................................................................................................... 15 

2.3 Sub-system Level Description ........................................................................................................... 15 

2.3.1 Electro-mechanical Sub-system ................................................................................................. 15 

2.3.2 Circuitry Sub-system .................................................................................................................. 21 

2.3.3 Microcontroller subsystem: ....................................................................................................... 26 

3. Implementation ...................................................................................................................................... 34 

3.1 System Level...................................................................................................................................... 35 

3.1.1 Integrating Get and Put ball for Rbot ......................................................................................... 35 

3.1.2 Integrating Navigation ............................................................................................................... 35 

3.1.3 Integrating Interaction ............................................................................................................... 36 

3.2 Sub-system Level ............................................................................................................................... 37 

3.2.1 Electro-mech subsystem ............................................................................................................ 37 

3.2.2 Circuitry Sub-system .................................................................................................................. 40 

3.2.3 Microcontroller sub-system: ...................................................................................................... 43 

4. Project Management .............................................................................................................................. 46 

4.1 Project Schedule: Revised Gantt Chart ............................................................................................. 46 



4 |  P a g e
 

4.2 Division of Labour ............................................................................................................................. 46 

4.3 Budget ............................................................................................................................................... 47 

5. Conclusion ............................................................................................................................................... 47 

Appendices .................................................................................................................................................. 48 

Appendix A: Engineering Drawings of 3D printed parts, name of parts in title block on lower left. ..... 48 

Appendix B: Budget and Bill of Materials ............................................................................................... 52 

Appendix C: Power Draw of LEDs, Photoresistors and Phototransistors. .............................................. 53 

 

  



5 |  P a g e
 

Symbols and Abbreviations 
R-bot: The ball retrieving robot 

G-bot: The game playing robot 

LED: Light emitting diode 

PID: Proportional, Integral, Derivative (a control technique) 

Break beam is synonymous to photo-interrupter 
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1. Design Process 
This section will provide background information regarding the project, by summarizing the task to be 

completed, highlighting the key components of our design, describing our design values and the 

performance metrics being used to evaluate our design. In addition, it will summarize the background 

research we conducted and our brainstorming process. 

1.1 Gameplay Strategy 
For the AER 201 competition this year, each team had to design and prototype a robot that could 

autonomously play a non-turn based version of Connect-4. The game balls (ping pong balls) must be 

collected either from corner hoppers at predetermined locations or from central hoppers in random 

locations. Each corner hopper holds 4 balls and each central hopper holds 7 balls, allowing each team to 

play a maximum of 22 balls. 

The game field is split into two halves and the robots are confined to their respective halves, each of 

which contains 4 hoppers and 22 balls. A grid 20cm x 20cm grid is painted on the field. All of the grid 

lines are black, except for the red centre line that is perpendicular to the game board. An annotated 

diagram is shown below in Figure 1. 

Lastly, a team would receive one point for every ball played, four points for each of their Connect-4s, 

and lose two points for each of their opponent’s Connect-4s. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Annotated Gamefield 
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1.2 Our Design 
To accomplish the task previously described, we decided to go with a two robot design. The first robot, 

R-Bot, was designed to retrieve balls from the hoppers and deliver them to the second robot, G-Bot, at a 

pre-determined location, known as the rendezvous point. At the beginning of the game, G-Bot would 

navigate from the starting position at the back, to the game board. Here it would play the balls retrieved 

by R-bot and monitor if the opposing team played any balls. From constant game board sensing, G-bot 

can keep track of game state and therefore play intelligently. 

1.3 Design Values 
At the beginning of our design process, we, as a team, identified the design values that we believed 

would be representative of a good robot design. They are listed and described below: 

1. Simplicity - a modular design where each component has a specific task. Minimize the number of 

tasks per component and complexity of control required for successful execution. Ensure that all 

components can be tested independently to ease debugging. 

2. Redundancy - the robot should have ways to verify and correct primary system. For example, 

odometry can specify a position and heading, but these should be updated by a secondary system 

such as line detection 

3. Robustness and Tolerance - design should allow for error and the robot should still be able to 

complete task under uncertainty. For example, to collect the ball from the hopper, the robot should 

not have to be perfectly positioned 

4. Speed - design should retrieve and play balls as fast as possible to maximize points scored. 

1.4 Performance Metrics 
Performance metrics were derived from the constraints identified in the course manual, the scoring 

system, and our design values. They are shown below in Table 1. 
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Table 1 Performance metrics to evaluate robot. 

Objectives Metrics Constraints Goal Criteria 

maximize balls 

retrieved (speed) 

number of balls retrieved 

in 7 min 

> 1 14 (1 

every 

30s) 

more is 

better 

consistent play 

(robustness) 

percent of retrieved balls 

played (%) 

N/A 100 % more is 

better 

minimize size (speed) dimensions  

(cm x cm x cm) 

< 40x40x40 cm each 

dimension 

independently 

N/A smaller is 

better 

minimize weight 

(speed) 

total weight (kg) < 3 kg N/A lower is 

better 

minimize cost cost (CDN) < $250 N/A lower is 

better 

minimize internal state 

modifiers (simplicity, 

robustness) 

maximum number of 

functions in which the 

same internal state is 

modified 

> 0 1 1 is best 

maximize tolerance of 

position (robustness) 

maximum error with 

correct play (cm) 

> 0 5cm higher is 

bettter 

minimize number of 

resets per game 

(robustness) 

number of resets < 2 0  lower is 

better 

 

1.5 Background Research 
We began our design process by decomposing the overall task into five smaller tasks. The functional 

decomposition is listed below: 

1. Grabbing the ball 

2. Lifting and depositing the ball 

3. Moving and navigating 

4. Locating dispensers 

5. Reading game state 

For each of the five tasks listed above, reference designs were identified and are briefly described below 

in Tables 2, 3 and 4. 
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Table 2 Background research conducted for grabbing the ball and lifting and depositing it. 

Function Reference Design 1 Reference Design 2 Reference Design 3 

G
ra

b
b

in
g 

th
e 

B
al

l 

Scooping the ball 
 
 
 
 
 
 
 
 
Advantages: 

 Few moving parts 

 High tolerance 
Disadvantages: 

 Makes ball transfer 
difficult 

 Friction between ground 
and robot (external force 
could complicate 
navigation) 

Sweeping the ball 
 
 
 
 
 
 

Advantages: 

 Tolerance of position 

 Secures ball in a precise 
location 

Disadvantages: 

 Can be difficult to remove 

 Significantly increases 
turning radius of robot 

 Introduces asymmetry 
(rotating are on one side 
of robot) 

Grabbing the ball (claw) 
 
 
 
 
 
 
 
 
 
Advantages: 

 Prebuilt system 

 Bidirectional 

 Secures ball in precise 
location 

Disadvantages: 

 Requires more moving 
parts 

 Requires precise 
positioning 

Li
ft

in
g 

an
d

 d
ep

o
si

ti
n

g 
th

e
 b

al
l 

Vacuum 
A fan could be used to create 
a pressure differential that 
would suck the ping pong 
ball up. It would then be 
ready to be played 
Advantages: 

 Quickly raise the ball 
Disadvantages: 

 Require significant power 

 Would still require 
another component to 
play the ball 

Conveyor 
Continuous loop to move 
objects in one direction. 
Variation would use a 
‘paddle’ to life the ball up an 
inclined plane 
Advantages: 

 Robust 

 1-way looped operation 
Disadvantages: 

 Requires multiple moving 
parts 

 Structure may be heavy 

Elevator 
Similar to conveyor method, 
special carriage would raise 
the ball to game board 
height. Actuated by motor 
winding a string via a pulley. 
Advantages: 

 Simple vertical motion 

 Multiple reference designs 
Disadvantages: 

 Many moving parts 

 Structure may be heavy 

 Less robust if ball 
misbehaves, no easy 
recovery 

 

  

Figure 2 Scoop manipulator from VEX 
robotics. 

Figure 3 Illustration of rotating 
arm to collect (sweep) ball 

Figure 4 Claw manipulator from 
VEX robotics. 
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Table 3 Background research conducted for moving and navigation, and locating hoppers. 

Function Reference Design 1 Reference Design 2 Reference Design 3 

M
o

vi
n

g 
an

d
 n

av
ig

at
in

g 

Line Following 
Simple navigation system 
requiring only some type of 
photo sensor. Approach 
feasible because of grid on 
game field. 
Advantages: 

 Simple and proven 
implementation 

Disadvantages: 

 Resolution limited by 
width of line 

 Accurate movement in 
units of 20cm and 90o 

 Likely to get completely 
lost if robot deviates from 
line 

Dead reckoning with 
odometry 

Navigation system reliant on 
incremental updating 
position by integrating 
velocity over a time interval. 
Wheel encoders are used to 
measure velocity 
Advantages: 

 Allows arbitrary motion as 
opposed to line following, 
robot can take more 
direct paths 

 More robust, can still 
function without grid lines 

Disadvantages: 

 Small errors accumulate, 
causing large drifts and 
errors in heading angle 

 No way to correct for 
robot drifting 

 Performance dependent 
of resolution of encoders 

Wall Following 
Robot maintains a pre-
determined distance from 
the wall to navigate and 
drive straight 
 
Advantages: 

 Simplest navigation 
implementation 

 Very little processing 
required, therefore can 
probably drive faster 

 Automatically adjusts for 
external environment and 
can automatically 
recalibrate 

Disadvantages: 

 Cannot reliably access 
central hoppers 

 Must travel maximum 
distance 

Lo
ca

ti
n

g 
h

o
p

p
er

s 

Do not use central hoppers 
Collect balls only from the 
corner hoppers whose 
positions can be hard coded. 
 
Advantages: 

 Simplest and most 
reliable solution 

Disadvantages: 

 Maximum 8 balls can be 
retrieved 

 Balls farthest from  game 
board 

Keypad Input 
Use a keypad to input 
locations of central hoppers 
 
Advantages: 

 Simple scheme for 
inputting central hopper 
location 

Disadvantages: 

 Limited information input 

 Requires keypad to be 
included in final design 

 May not be able to double 
check which buttons were 
pressed 

Serial Writing 
Use Processing to provide 
information to robot. Does 
not require re-uploading 
code 
Advantages: 

 Large amounts of 
information can be 
provided to robot 

 Can visualize information 
provided (graphically) 

Disadvantages: 

 Requires laptop and more 
code to be developed and 
tested 
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Table 4 Background research conducted for sensing game state. 

Function Reference Design 1 Reference Design 2 Reference Design 3 

Se
n

si
n

g 
ga

m
e

 s
ta

te
 

No game sensing 
Do not sense game state or 
game balls. Always deposit 
ball in the same column or a 
random column 
 
Advantages: 

 Simple design, no sensors 
required 

Disadvantages: 

 Cannot play intelligently 

 Cannot determine when 
column is full, would not 
get points for putting ball 
in column that is already 
full 

Sense only top row 
Sense only the top row. 
Would always determine if 
there is space to play in a 
specific column 
 
Advantages: 

 Still mechanically simple 

 Avoids playing ball in 
column that is full 

Disadvantage: 

 Does not permit 
intelligent gameplay 

Full game state sensing 
Sense the locations of all 
balls that have been played. 
 
Advantages: 

 Optimal gameplay, 
maximize points scored 

Disadvantages: 

 Most complex solution. If 
game board not being 
constantly monitored, 
either 42 sensors required 
or moving sensor bar 

 

1.6 Conceptualization 
This section will summarize our divergence, convergence, and decision making processes. 

1.6.1 Divergence Process 

Two techniques were used to expand our design space, ‘Challenging Assumptions’ and ‘Abstracting Up’. 

In the first technique, ‘Challenging Assumptions’, specific constraints are ignored while brainstorming 

solutions. Later, the applicability of solutions to these ‘simpler’ design problems are evaluated, and 

necessary adaptations to the new ideas were made. The second technique, ‘Abstracting Up’, a more 

general version of the task was articulated and reference designs were researched. 

1.6.2 Convergent and Decision Making Process 

The divergence process described above creates multiple solutions that are unrealistic, or would be too 

difficult to implement with the given constraints. Therefore, the first step in our convergence process is 

to eliminate infeasible and unrealistic ideas. The remaining ideas are further explored through sketches, 

and low fidelity prototyping. After a better understanding of the potential solutions has been developed, 

a pugh chart is used to explore the advantages and disadvantages of our solutions. As a team, we used 

our design values and engineering judgement, informed by the pugh chart, to make our decision. 

2. Technical Description 
Technical description outlines in detail components used, programs deployed, and subsystem 

interactions within the robot. 
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2.1 System Level Description 
When the game first starts, both robots are calibrated against the game field for five seconds. Then, 

human controllers plot the waypoints for navigating initially from the starting position, and the path for 

retrieving balls from the hoppers using the map user interface from Processing, communicated to the 

Arduinos via serial writing. Once this is completed, the USB serial cable is disconnected and the robots 

are set in their starting position (see figure 6) Rbot has a 5 second delay programmed into it to avoid 

collision with Gbot when both attemp to turn in place. Gbot’s path is plotted in the same way as Rbot’s, 

with the exemption from retrieving from hoppers. Gbot’s path should go around the left side of the 

game board, hugging the wall but leaving enough room for turning in place. Near the gameboard, Gbot’s 

automatic sonar correction activates to guide it to the desired distance away from the gameboard while 

its line correction brings it right past the center red line to the correct x coordinate. Rbot follows first the 

human plotted initial part to navigate away from the starting position to get into an advantageous 

location, then finds the nearest hopper and approaches it using the second path the human plotted. As 

Rbot approaches the hopper and the ball sits securely on the ramp, break beam sensors located on the 

side of the gate are broken, and signifying the secure possession of the ball, allowing the servoed gate to 

close. Rbot then backs up to a distance safe enough to turn in place, after which it heads towards the 

rendezvous point to deposit the ball to Gbot. Gbot detects the deposited ball via an IR break beam, 

navigates to the column giving the highest point if played, then lifts the ball up while watching for the 

ball to drop with its photoresistor and laser sensor bar. After it plays the ball, which it knows by the 

length of time since lifting and if it detects a ball drop in the appropriate column, Gbot returns to its 

rendezvous point to away more balls from Rbot. Figure 5 below show the graphical flow of each robots’ 

specific and shared behaviours and interactions. 
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Figure 5. System level interaction of various modules. 

The initial position of the two robots is shown below. 

 

Figure 6 Map showing alignment of R-bot and G-bot, with coordinates. 
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2.2 Full Operating Procedure 
The full operating procedure has been subdivided into 4 sections: 

1. Before arriving at game field 

2. First 5 minutes at game field 

2 minutes setup time 

3. After the game (Post-flight checklist) 

2.2.1 Pre-flight checklists 

The first three sections of the Full Operating Procedure are distinct Pre-flight checklists and are 

displayed below. 

2.2.1.1 Before arriving at game field 

 Check batteries: (R-bot and G-bot) 
 Replace 9V battery if measured voltage is below 8V 
 Replace 4 AA batteries if measured voltage is below 6V 

 Test encoders: (R-bot and G-bot) 
 Run encoder program, ensure all 4 break beams are working 
 Push in all 4 wheels 

 Check bottom sensors, reposition/realign if necessary (R-bot and G-bot) 
 Check orientation of sensor bar incase it was nudged/displaced (G-bot) 
 Check position of elevator and sonar (G-bot) 

 

 

 

 

2.2.1.2 First 5 minutes at game field 

 Test bottom sensors, ensure they can detect game lines (R-bot and G-bot) 
 Upload code for G-bot 

 Give G-bot coordinates for navigation to game board 
 Double check that correct coordinates have been given to G-bot 
 Calibrate: 

o Plug in battery power to Arduino and remove USB serial port 
o Calibrate robot (3 second delay from uploading path to beginning of calibration) 

 G-bot is now game ready 
 Upload code for R-bot 

 Test red line detection threshold 
 Have processing open and ready to communicate with R-bot 

2.2.1.3 Three minutes setup 

 Place G-bot in starting position 
 Input path that R-bot should take via Processing 
 Connect battery power to R-bot, then disconnect USB cable 
 Calibrate R-bot 



15 |  P a g e
 

 Place R-bot in starting position, it is now game ready 
 Wait for game to begin, start both robots 

2.2.2 Post-Flight Checklist 

 Check laser sensor bar (G-bot) 
 Check bottom photo resistor (G-bot) 
 Check bristly rigidity (G-bot) 
 Check conveyor rigidity (G-bot) 
 Check bottom sensor bar (R-bot) 
 Check scoop position (R-bot) 
 Check sword/gate rigidity (R-bot) 

2.3 Sub-system Level Description 
This section will provide full technical details for each of the three sub-systems of R-bot and G-bot. 

2.3.1 Electro-mechanical Sub-system 

Please refer to Appendix A for dimensions of parts refereed. 

2.3.1.1 Rbot 

Rbot uses an off the shelf chassis kit (the Magician Chassis by SparkFun), which includes two 3-6V 

motors, 2 wheels/hubs with fitting shafts holes, 4 mounting pieces to secure the motor, 1 castor wheel, 

1 4xAA battery pack, and assorted nuts and bolts. Sharp Optical encoders are used with 3D printed 

encoder wheels (see Figure 7)  and mounted with hot glue onto the pre-geared (before gearbox) motor 

shaft, corresponding break beam sensors are mounted on the underside - where the wheel encoders are 

- with hot glue as well. 

 

Figure 7 Raytracing rednering of encoder wheel, on Autodesk Inventor. 
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The arduino mega and protoboard, are attach vertically using taped elbow joints and a balsa wood block 

respectively. 

Rbot’s front scoop is shaped sheet aluminum, with recessed lip, and bent sides, creating a bowl cross-

section as shown in Figure 8. This figure also shows the gate mounted on a servo motor which is sitting 

on a support arm that is secured by a screw and hot glue. The scoop is pressured fitted and hot glued 

into soft balsa wood mounted on the frame which is also mounted using the same method. 

 

Figure 8 Photo of R-bot front section, scoop outlined in orange, and friction fitted to hot glued balsa wood in blue box. 

Over the internal circuitry of Rbot sits a glued on foam covered particle board casing constructed using 2 

self-threading screws, and 4 pairs of M10 bolt/nuts connected to a elbow joint acting as the bracing. 

This whole casing sits atop a velcro layer for ease of removal and attachment. It is shown in Figure 9. 
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Figure 9 Foam covered particle board casing, comprised of 3 pieces held together by 2 bolts (green) and 1 screw (yellow on 
each side). Velcro is attached on the bottom (purple box) 

Underneath Rbot, there sits a 3D printed sensor support bar, shown in Figure 10, meant to hold 3 IR 

modules, the 4 legs attach to the yellow gearboxes using hot glue. The sensors are attached to the bar 

using hot glue. 
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Figure 10 Raytracing rendering of IR bar. IR sensors hot glued in direction of the 3 blue arrows. 

2.3.1.2 G-bot 

Gbot uses the same chassis, motors, and wheels as the Rbot, save for a metal ball bearing castor. Below 

Gbot, there sits a balsa wood block functioning as the sensor bar, it has hole for the a 7mm 

photoresistor with a white LED. This block is attached to the yellow gearboxes using hot glue. In 

addition, Gbot has two particle board mounts flush with its long midplane, one at the back and one at 

the front of the robot. These are bolted to frame with a pair of M2 bolt/nuts. The particle board has a L 

shaped cross section, shown in Figure 11, and has a strip of velcro attached for securing the ultrasonic 

sensors. 

 

Figure 11 Photo of front sonar bar, with support highlighted in red, and velcro interface in green. 
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Figure 12 Ball lifting mechanism. Chain Support in orange, ball support arm in blue, foot in green, and chain mount/bristle 
assembly red. 

The ball lifting mechanism (Figure 12) of the Gbot consists of 4 pillars supporting 2 of 3 sowel pieces 

forming a U shaped structure. This is supported by two 3D printed U-Brackets (pink parts). Above the U-

tube structure sits the chain mechanism actuating the lifting. The chain is composed of a C shaped 

aluminum tube with a plastic sprocket mounted at each end to hold the metal chain. These are 

extended by 3D printed sprocket couplers to create a 2 point support, as shown in Figure 13. The top 

coupler is connected to a 3V-6V geared motor. Because this motor on rotates in only one direction, the 

torque produced is countered by a long M8 bolt cantilevered from the aluminum section (see Figure 13). 
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Figure 13 Top view of chain, showing sprocket (orange), sprocket coupler (green) and cantilevered bolt (blue) to counter 
motor rotation 

On one chain link, the Chain mount (see cad) is hot glued to a scratch surface (for better adhesion) and 

4-5 bristles are glued into two holes on the side of the chain mount. More hot glue is added at the base 

of the bristles to add support. White packing foam is cut into a rectangle and stuck through the bristles; 

additional bristles are stuck onto this platform at 70o to prevent jamming of the ball. 

 

Figure 14 Raytracing rendering of Chain mount, which attaches foam/bristle assembly to the chain. 

The aluminum tube is supported by 3 3D printed arms mounted to 2 of the 3 dowel pieces forming the 

U-tube structure. The arms snap on to the round dowels, but are bolted by 2 M8 bolts to the aluminum 

section. 
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At the base of the U-tube structure is attached 2 3D printed curved arms to hold a IR break beam pair, a 

string to pen in the ball, and additional bristles to prevent the ball jamming. 

 

The Gbot includes also a sensor to detect a ball dropping down a column, this is comprised of a 30cm 

long plywood piece with 7 holes, each hole accommodating 1 laser module and 1 10mm photoresistor 

covered by a red plastic filter to amplify signals (see Figure 15). The whole sensor bar is hot glued to the 

U-tube structure described above using 2 particle board tabs and 1 plastic arm. 

 

Figure 15 1 of 7 sensor pairs on the sensor bar 

2.3.2 Circuitry Sub-system 

This sub-section will provide the technical details for the circuitry subsystem for both R-bot and G-bot. 

3.2.2.1 Circuity Sub-system R-bot 

Figure 16 shows the circuitry and sensors in R-bot. 
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Figure 16 All circuitry, sensors and circuit components in R-bot. 
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Table 5 All circuit elements in R-bot that are powered by the Arduino and their power draw. 

Circuit Component Product Number Quantity Power Draw per 
Component 

Total Power 
Draw 

Servo Motor SM-S2309S 1   0.00 

Emergency Stop Switch   1 0.00 0.00 

IR Detectors TRCT5000 3 0.10 0.30 [1] 

Visible Light LEDs   5 0.11 0.57 

Photoresistor OPTRE-000010 1 0.00 0.00 

IR LED LTR-4208 1 0.11 0.11 

IR Reciever 
(Phototransistor) 

LTR-3208E 1 0.00 0.00 

Photo-interrupters GP1A57HRJ00F 2 0.25 0.50 [2] 

H-bridge L293D 1 1.70 1.70 [3] 
 

R-bot Arduino Power Calculations 

The total power draw of all the components powered by the Arduino is 3.19 W. However, we also need 

to find the power draw of the Mega. When tested (by a third party), the Arduino Mega drew 35mA from 

a 9V power supply, therefore consuming 0.315 W [1]. Therefore the total power consumption from the 

Arduino, Sensors and Integrated Circuits is 3.5W. Over 7 minutes, a total of 1470 J of energy would need 

to be provided by the 4AA batteries. In addition, assuming that each battery provides a potential 

difference of approximately 1.5 V [2], the current draw from each battery would be approximately 

583mA. Referencing the data sheet, at 500mA, the battery’s capacity is approximately 1500mAh, or 

approximately 3 hours [2]. Therefore, the 4AA Energizer batteries should be able to provide the Arduino, 

sensors, and integrated circuits with sufficient power for multiple rounds. 

R-bot Motor Power Calculations 

The motors to drive R-bot were powered by a 9V Energizer Industrial D-cell battery. The maximum 

power draw from each motor was 1.125 W (250mA at 4.5V) [3]. Therefore, the maximum power draw 

from both the motors is 2.25W, or 250mA of current supplied from the battery. According to the data 

sheet, at a discharge of 300mA, the capacity is just under 400 mAh, equivalent to over 1 hour of run 

time [4]. Therefore, the 9V Energizer D-cell battery should be able to provide sufficient energy to the 

motors for multiple rounds. 

3.2.2.2 Circuity Sub-system G-bot 

Figure 17 shows the circuitry and sensors in G-bot. Only 3 of the 7 laser modules are shown to help 

simplify the diagram. 
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Figure 17 All circuitry, sensors and circuit components in G-bot. Only 3 of 7 identically connected laser modules are shown [1] 
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Table 6 All circuit elements in G-bot that are powered by the Arduino and their power draw. 

Circuit Component Product 
Number 

Quantity Power Draw per 
Component 

Total Power 
Draw 

Emergency Stop Switch N/A 1 0.003 0.0025 

Visible LED N/A 1 0.114 0.114 

Photoresistor   8 0.003 0.02 

IR LED LTR-4208 1 0.114 0.114 

IR Reciever 
(Phototransistor) 

LTR-3208E 1 0.003 0.0025 

Photointerruptors GP1A57HRJ00F 2 0.250 0.5 [2] 

H-bridge L293D 1 1.700 1.7 [3] 

Lasers N/A 7 0.005 0.035 [9] 

Ultrasonic Range Finders HC SR04 2 0.075 0.15 [10] 

Mofset Transistor BSH105 2 0.417 0.834 [11] 

 

G-bot Arduino Power Calculations 

The power draw of all G-bot components powered by the Arduino is 3.47 W. As discussed previously, 

the power draw of the Arduino Mega is 0.315 W [1]. Therefore the total power consumption from the 

Arduino, Sensors and Integrated Circuits is 3.79W. Over 7 minutes, a total of 1591.8 J of energy would 

need to be provided and each of the 4 AA Energizer batteries. Assuming that each provides a potential 

difference of 1.5 volts, each battery would have to provide approximately 631.7mA, and therefore 

should last just under 3 hours [2]. Therefore, the 4AA Energizer batteries should be able to provide 

sufficient power for the Arduino, sensors, and integrated circuits for multiple rounds. 

G-bot Motor Power Calculations 

The circuitry of G-bot included three DC motors, 2 for driving the wheels and one for the elevator. 

However, at one time, at most two motors were activated because the robot was either driving or lifting 

the ball, but not simultaneously. Therefore the calculations from the R-bot Motor Power Calculations 

can be applied, and we expect the battery to have about 1 hour of run time, sufficient for multiple runs. 

Explanation of Power Calculations 

This section will summarize how the values of the power draw per component were found or derived. 
 
The power draw of the following components were found from their datasheets: 

 Vishar IR Proximity Sensors [6]  
 Sharp Photo-interrupters [7] 
 Texas Instruments H-bridge [8] 
 Mofset Transistor [9] 

 

In addition, the power consumption for the lasers was provided on the web page that we used to order 

the lasers. 
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The power draw of the following components was derived from information from their datasheets. For 

example, if maximum current was provided, the power consumption was found using         , 

where V was +5V if it was being powered by the Arduino. 

 DC Motors 
 Ultrasonic Range Finders (HC SR04) [10] 

Lastly, the power drawn by the LEDs, photoresistors and IR phototransistors was calculated by assuming 
that all their resistances went to zero and using the power that would be dissipated across the resistor. 
The justification for this technique is provided in . For example, an LED is connected in series with a 220 
ohm resistor and the power drawn by LED was assumed to be the power drawn by the 220 ohm resistor. 

These two circuits are shown below. The power is then calculated using   
  

 
. 

 

Figure 18 Circuit for connecting an LED to Arduino Power 

 

Figure 19 Circuit used to calculate power draw of an LED 
connected to Arduino Power 

Using the method described above, the power draw of each LED was found to be 0.114 W and the 

power draw of each photoresistor and phototransistor was found to be 2.5 mW. 

H-bridge circuitry 

An H-bridge was used to control the two motors turning the wheels. For each motor, there was an 

enable pin and two control pins. The control pins were used to control whether the wheel rotated 

clockwise or counter clockwise. The enable pin was pulsed with modulation to control the total current 

provided to each wheel. This gave us more control, allowing us to use our PID controller and the various 

applications of it. 

2.3.3 Microcontroller subsystem: 

2.3.3.1 Parallel systems 

At the highest level, the logic is split into a gameplay system and a position correction system for each 
robot, with gameplay run at 20Hz and correction run at 100Hz. The necessity of a dedicated position 
correction system was determined through testing without it and the observation of accumulated drift 
error from relying solely on odometry. This is due to imperfections in our measurement of wheel 
dimensions (relative sizes), momentum of DC motors, and the imperfect contact of the wheels to the 
game board. 
 
The fundamental state of both robot includes its current position (x, y, theta) with x and y measured in 
mm inside an internal grid and theta in radians from [-π, π] where 0 is oriented facing the game board. 
Each robot also maintained a stack of targets, each with an absolute x, y, theta, and type. Its theta is the 
desired angle for the robot upon reaching the target and its type is the associated task to be performed 



26 |  P a g e
 

upon arriving at the target; for its full declaration, see Appendix A. Upon arriving at a waypoint, the top 
most target is popped and the next (if there exists any) target is automatically loaded, with potential 
changes in behaviour calculated by waypoint and user_waypoint. 
 
The gameplay system directed all the actions of the robots, with the only communication with the 
correction system being a shared internal state, from which the position correction system would read 
and modify position and heading - (x, y, theta) only. See figure 20 for the control flow of the gameplay 
system architecture for both robots. 

 
Figure 20 Gameplay systems architecture and behaviour layers with corresponding priorities for both Rbot and Gbot. 

2.3.3.2 Odometry 

At the start of each gameplay cycle, odometry is done to collect the ticks accumulated from the start of 

last cycle. Displacement and distance are found from that through the formulas below: 
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// displacements in mm 
double displacement_l = dir_l * (double)instant_tick_l * MM_PER_TICK_L; 
double displacement_r = dir_r * (double)instant_tick_r * MM_PER_TICK_R; 
double displacement = (displacement_l + displacement_r) * 0.5; 
 
// total distance is a scalar 
if (displacement > 0) tot_distance += displacement; 
else tot_distance -= displacement; 
 
theta += atan2(displacement_l - displacement_r, BASE_WIDTH); 
x += displacement * cos(theta); 
y += displacement * sin(theta); 

 

The MM_PER_TICK_L parameters were carefully calibrated through many trials of driving a known 

distance and measuring the ticks accumulated. A negative theta represents a counterclockwise turn 

from 0, which is pointed “up” towards the gameboard. 

2.3.3.3 Gameplay layers 

A subsumption architecture for the gameplay layers was used because it was best suited for the event 
driven environment the robot would be in, which would be much more robust than a finite-state 
machine approach where the robot is assumed to be in a set of defined states. In this architecture, each 
behaviour runs parallel to one another with a defined priority. Many behaviours can be active at once, 
such as avoid_boundary and navigate, but avoid_boundary would have control as long as it is active 
since it holds higher priority.  
 

Each behaviour layer controls for speed and angle, measured in effective ticks per cycle (scaled by non-

equal wheel size), and is either active or non-active. Their declaration can be seen below. 

struct Layer { 
 // speed and angle in units of ticks/cycle 
 int speed, angle, active; 
}; 

 
Layers can be activated inside itself, such as avoid_boundary, or inside other layers, such as hard_turn 
by navigate when the heading error becomes large enough. 
The layers are complementary and lead to effective emergent behavior, such as a smooth turn around 

boundaries, as shown in figure 21 below. 
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Figure 21 Navigating around a boundary; the red circle is the boundary with scaled radii, white path represents when 
avoid_boundary was the active layer while black path represents when navigate was the active layer. 

2.3.3.4 Motor_control and PID - controls translated to motor outputs 

The layers communicate only in terms of effective ticks per cycle, which as seen in Figure #### (systems 
flow chart) is selected by arbitrate to create the targeted left and right ticks for the next cycle according 
to the formula below: 
 
target_l = control_layer.speed + control_layer.angle; 
target_r = control_layer.speed - control_layer.angle; 

 
For a differential drive system, the angle ticks added to the left target and subtracted from the right 
target completely controls navigation. A negative angle would slow the left wheel and speed up the right 
wheel, turning the robot right. A zero speed and non-zero angle would cause equal speed in opposite 
direction on the wheels, causing turning in place.  
The targeted ticks are then converted into PWM output values by the PID controller using the 

proportional error, the integral of past error, and the rate of change of error to drive the H-bridge. 

2.3.3.5 Avoid_boundary layer 

This base layer is shared by both Rbot and Gbot as the highest priority layer. The reason being that 
colliding with a boundary would render the rest of the behaviours ineffective.  
Each boundary in the array of known boundaries, which are added at run-time, is computed for their 
parameters as shown below: 
 
Boundary& boundary = boundaries[b]; 
// check distance to boundary 
double diff_x = boundary.x - x; 
double diff_y = boundary.y - y; 
// approximate each boundary as circle, from center to point - radius 
boundary.distance = sqrt(sq(diff_x) + sq(diff_y)) - boundary.r - TURNING_RADIUS; 
// compare this with theta to see if collision likely 
boundary.theta = atan2(diff_y, diff_x) - theta; 
// high threat comes from being closer and a straight hit 
boundary.threat = (BOUNDARY_TOO_CLOSE - boundary.distance) *  
  (BOUNDARY_TOLERANCE - abs(boundary.theta)) / BOUNDARY_TOLERANCE; 
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The threat of a boundary is negatively proportional to the distance from it as well as being negatively 
proportional to the size of the heading error. Therefore, heading square at a close target would produce 
the highest threat. When any boundary threat exceeds a threshold, avoid_boundary is activated and 
remains activated until that boundary is some distance away. 
 

2.3.3.6 Navigate layer 

Another base layer shared by both Rbot and Gbot responsible for steering and controlling the speed en 

route to most targets. It is activated whenever there is a valid target and the position is more than a 

immediate threshold (5mm) around it. See figure 22 below for a graphical representation of how a 

target is navigated to. 

 

Figure 22 Navigate target rings corresponding different distances to responses. 

It turns toward the target when the heading error exceeds a minimum tolerance (0.03 rads), and slows 

down the closer it gets to the target in order to prevent overshooting. The speed is clamped to both a 

minimum value to prevent stalling and a maximum value to prevent slipping. 

2.3.3.7 Hard_turn layer 

The last layer shared by both robots, this fundamental navigation layer turns in place by controlling 
speed to be 0 and angle to be non-zero. It is activated only inside the navigate layer when either 1. the 
heading error exceeds a minimum threshold (0.5 rads) when turning in place would lead to a better and 
faster path to target, or 2. when the target is reached but the current heading is not close enough to the 
desired heading at target. 
 
The turn speed is a function of the proportion of the original turn completed, slowing down as the entire 
turn nears completion. This is seen in the code below: 
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to_turn = targets[target].theta - theta; 
// would be faster to turn in the opposite direction  
if (to_turn > PI) to_turn -= TWOPI; 
else if (to_turn < -PI) to_turn += TWOPI; 
// either to_turn close to turn size or even greater, kick start it (usually at start 
of turn) 
if (turn_size - abs(to_turn) < THETA_TOLERANCE) { 
 if (to_turn < 0) turn.angle = -KICK_SPEED; 
 else turn.angle = KICK_SPEED; 
 return; 
} 
// compare against initial turn size 
else if (abs(to_turn) < turn_size) { 
 turn.angle = to_turn/turn_size * NAV_TURN * 3; 
} 
 
turn_size is defined every time the hard_turn layer is activated and is the initial and expected largest 
turn size. Small turns need to be kick started with a higher than normal target since DC motors take 
more voltage to start than to run. 
 

2.3.3.8 Get_ball layer (R-bot) 

This layer is activated when a target with a TARGET_GET type is reached and deactivated when the 
robot has sufficiently backed up enough distance (250mm after getting the ball) to clear the hoppers 
and allow turning in place. This mode is a closed behaviour in that it activates no other layers and is 
supposed to be activated only during a specific activity.  
 

Its behaviour involves heading towards the active hopper, waiting for the ball to be in the scoop for 

enough cycles (5) before closing the gate for 15 more cycles, then backing out for 250mm. 

2.3.3.9 Put_ball layer (R-bot) 

Similar to get_ball, this layer is a closed behaviour activated when a target with a TARGET_PUT type is 
reached, which in gameplay should be at the rendezvous point after the ball is retrieved by get_ball and 
it has backed up enough to allow for turning in place. 
 

This behaviour assumes its at the right location, so speed is 0, and turns slowly until the angle stabilizes 

for enough cycles at near 0 degrees (within 0.06 radians). It then opens the gate and drops off the ball, 

releasing control. 

Watch layer (Gbot) 

This layer, unlike the other layers, controls for more than one behaviour. Gbot needs to turn to face the 
wall perpendicularly as well as watch the game, which naturally splits into the two behaviours of 
turn_to_watch and watch_balls_drop. This layer is only active when not moving around, being activated 
after arriving at the rendezvous point or a column to drop off a ball. 
 

turn_to_watch adjusts Gbot’s theta by turning in place until it stabilizes to near 90 degrees (within 0.06 

radians) for 6 cycles. When displaced from the alignment, such as being pushed by Rbot or pushed by 

the opponent robot, turn_to_watch activates again to realign itself. This behaviour is best supplemented 
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by the touch_wall correction from sonar, but does not require it as it operates only on internal heading. 

This behaviour is illustrated in the figure below: 

 

Figure 23 Turn to watch behaviour for G-bot alignment parallel to 90 degrees. 

watch_balls_drop does not influence navigation at all, but simply updates Gbot’s internal representation 

of the gameboard by detecting ball drops using the laser sensor bar. A ball drop is registered as a 

sufficient (> 30) sensor reading offset of only one sensor from its ambient reading for more than 3 

consecutive cycles. Multiple sensors reading large offsets usually indicates reading the other robot while 

non-consecutive offsets likely indicate random fluctuations. 

2.3.3.10 Play layer (Gbot) 

This layer is activated after Gbot detects a ball in its collection area. It is responsible for navigating to the 

correct column (sometimes just the middle column at the rendezvous), lifting the ball after the watch 

layer has ensured Gbot is aligned and calibrated, and moving back to the rendezvous after the watch 

layer detects the ball has dropped. This is all done while keeping a constant angle parallel to the wall 

since the large sensor bar and close proximity to the gameboard prevents any turns. 

The play layer only considers the y position (parallel to game board, perpendicular to side walls) when 
deciding when it has arrived at the target, since the x position fluctuates based on the sonar reading and 
adjusting for it would require large turns. 
 

2.3.3.11 Path selection 

Arriving at a target internally is equivalent to calling the waypoint function, which performs the job of 
loading up the next target if there are any, and deciding whether to add additional targets or not based 
on the previous target and the current position. 
 
Gbot’s game strategy involves only getting to the gameboard and staying there while Rbot’s game 
strategy involves three kind of complicated paths: 1. navigating to somewhere safe from the initial 
starting position, 2. navigating to the hoppers from the rendezvous point, and  3. navigating back to the 
rendezvous point after backing out from a hopper. 

 

2.3.3.12 Position correct system 

Since each robot has a different array of sensors, their position correct systems are also going to be very 

different, as seen in Figure 24 below: 
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Figure 24 Position correct system architecture diagram for both Rbot and Gbot. 

Both robots share a photoresistor near the center of the bottom, but use it for different purposes. As 
mentioned in the circuits section previous, the photoresistor coupled with an LED can detect both black 
and red lines without being able to distinguish between them. For Rbot, the IR sensors cannot read red 
lines, so when the photoresistor detects a line when the last black line was detected far enough away 
(>35mm), Rbot is likely over the center red line. For Gbot, its motion is simplistic enough that it does not 
need this extra information and can correct on every line.  
 
All of the correction functions are passive in the sense that they do not directly control for speed or 
angle like a gameplay behaviour layer, only updating (x, y, theta). Separating correction and navigation 
allows for easier debugging and makes the robot faster since it does not interrupt the gameplay 
behaviour to correct. 
 
One condition shared by all line correction functions is the need to avoid the ambiguity of intersections, 
as shown in figure 25 below: 

 
Figure 25 Unambiguous line correction regions of a grid; where the line correction functions are allowed to consider 

correction. 
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2.3.3.13 Passive_position_correct 

This function is activated when a line is fully passed - when the center sensor (IR for Rbot and 

photoresistor for Gbot) reads no line after 3 consecutive cycles of reading a line. Leaving a line is used 

instead of hitting a line since it requires consecutive cycles of being on a line prior to leaving it, giving a 

point of checking for accidental readings. 

The position closer to a grid line is rounded to that grid line, accounting for the line width by the 

direction of movement. This essentially splits each grid into four quadrants, as shown in figure 26 below: 

 

Figure 26 Passive position correct quadrants for which position to correct based on closest to grid. 

2.3.3.14 Passive_theta_correct 

Drift error mostly manifests in an inaccurate theta (heading), which can be corrected by assuming a 
straight path and considering the distance between each sensor along the wheel of Rbot first 
encountered a line, illustrated and explained in the figure below. 
 

 

Figure 27 Passive theta correct based on the assumption of straight paths while crossing a line and using similar triangles. 

The angle retrieved is a theta_offset from being normal to the line, which can be easily used to correct 

for theta according to the code described below: 

 
 



34 |  P a g e
 

float theta_candidate; 
// assume whichever one passed first was the first to hit 
if (passive_status & PASSED_LEFT) theta_candidate = (square_heading()*DEGS) + 
theta_offset; 
else if (passive_status & PASSED_RIGHT) theta_candidate = (square_heading()*DEGS) - 
theta_offset; 
else if (hit_first == LEFT) theta_candidate = (square_heading()*DEGS) + theta_offset; 
else if (hit_first == RIGHT) theta_candidate = (square_heading()*DEGS) - 
theta_offset; 
// hit at the same time? 
else theta_candidate = (square_heading()*DEGS); 

 

2.3.3.15 Passive red line correct 

As mentioned previous, a red line is indicated by the photoresistor reading a line and the last black line 

being read (> 35mm) away, assuming Rbot is not going backwards. Otherwise, red line correct always 

corrects the y coordinate to be close to rendezvous y (800mm) since that is the only place where a red 

line is. 

2.3.3.16 Touch_wall 

Two sonars at the front and back of Gbot gives absolute position of both ends. These values are 
averaged over 4 cycles and used to determine both the heading and the x coordinate of Gbot. 
 

 

Figure 28 Sonar mechanism for correction for theta as well as x. 

3. Implementation 
This section will provide an overview of system level implementation before looking at each sub-system 

individually. 
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3.1 System Level 
The gameplay system rests on a subsumption architecture, with a distinctive active layer each cycle that 
is the only point where speed and angle is controlled from. See figure (human plotted waypoints) below 
to see how the active layer can be easily visually represented. The entire system was designed towards 
ease of integrating various layers, as the core behaviours (navigation) function indepently of any 
potential new layers such as getting and putting the ball, which are closed behaviours.  
 
The general strategy for integration is testing from the lowest level up, and testing each component 
individually with the assistance of visualization from the map user interface. 
 

3.1.1 Integrating Get and Put ball for Rbot 

Starting from the lowest abstraction level up, Rbot’s ramp was tested first by manually placing a ball on 
the ramp and analyzing the direction of the roll and how fast it reached upon hitting the ground. The 
ramp’s physical design was changed three times to optimizing for a small shooting angle and fast 
velocity at the foot of the ramp, as well as the height of the ramp such that instead of pushing the ball 
away from the hopper, simply slid underneath the ball to pick it up. 
 
Next, the servo controlling the gate was tested to find the best placement and orientation. The 
orientation originally had the servo sideways, but that increased Rbot’s turning radius by about 8mm 
and was later mounted sideways. The simplest code for driving a servo arm was used to test the circuit’s 
validity, with later tests moving onto which PWM values corresponded to each orientation of the servo. 
The IR break beam to detect the presence of ball was tested next, particularly its placement on the servo 
sideways across the ramp. The sensor performed exceptionally and did not require further testing. 
The logic was tested last, after all the electromechanical and circuits potential problems have been 
eliminated. The robot’s internal position can be arbitrarily set via the map user interface in Processing, 
and configuring Rbot’s internal state to get the ball, the mock hopper was used to see how well Rbot 
navigated to the hopper from various starting locations and how often it failed to retrieve a ball. 
The number of cycles to close the gate before leaving the hopper was configured as tested to allow 
enough time for Rbot to move into position before backing up. 
 
Put ball behaviour’s logic was tested in a similar method, except the state is now configured to have the 
ball and near the rendezvous point where it would drop the ball. A frequent problem was not fully 
orienting 0 degrees to face Gbot perpendicularly and stopping before the red line was reached. 
This prompted an additionally turning behaviour inside the put layer and a seek red line behaviour 
implicit for navigation, which when Rbot thinks it is at the red line but have not detected one recently, it 
is internally placed further away from the center line to prompt it to keep going forward until it hits the 
line. Adding in this behaviour seems to have guaranteed red line arrival. 
 

3.1.2 Integrating Navigation 

The goal and innovation stated in the design proposal named Rbot’s navigation system to be the 
foundational system that would enable all the other behaviours. Thus this was the system that the most 
time was spent refining and testing.  
 

To test each part of navigation, a mock game field with mock hoppers, as seen in figure 29 (mock game 
field) were created. Walls were also used to test for Gbot’s sonar. 
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Figure 29 Mock game board and hopper for navigation and integration testing. 

During the course of testing, Gbot’s tolerance for turning radius was determined to be very wide - a 

consequence of its wide sensor bar. The solution was to set waypoints further away from the wall. 

Navigation’s integration came naturally with the way targets are designed - each with a heading and a 
type. The heading is the desired heading after arriving at the target, which were important to get_ball, 
put_ball, and the watch behaviours of Gbot. get_ball requires the robot to be pointed towards the 
hopper, the angle of which can be found by considering the vector from the hopper’s position to the 
waypoint’s position. put_ball requires the robot to be pointed towards Gbot, which would always be 0 
degrees at the rendezvous point. The watch behaviours of Gbot requires theta to be 90 degrees pointed 
right so that Gbot was always kept parallel to the game board, even while driving backwards. 
 
The type system gave information to waypoint upon arriving at a target to consider the next state. For 
example, if the previous target was of type TARGET_PUT, it implies that Rbot was just able to deposit a 
ball to Gbot and can go find the nearest hopper to retrieve more balls. The target type system provided 
some familiarity of a finite state machine which made it easier to debug. 
 

During the course of testing, issues with Rbot’s passive_theta_correct was found in being able to pick 

waypoints that would guarantee it many opportunities to correct drift error. This problem, as discussed 

later in the microcontroller section, was addressed by adding in the feature for a human to select the 

sequence of waypoints for each robot through the map user interface. 

3.1.3 Integrating Interaction 

One of the key innovations noted earlier in the design proposal was the use of two robots. As such, 
interaction between the two is a key challenge. This challenge had implications on the methods Rbot 
could use to retrieve the ball and Gbot could use to lift the ball. 
An earlier idea of a sweeper arm for Rbot to retrieve the ball was not pursued as it made navigation 
asymmetrical and required the ball to be on one side of the robot to be effect. It lengthed Rbot’s turning 
radius, which made turning in place difficult, and had the fundamental challenge of needing to trade off 
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turning radius for increases in sweeping tolerance, as a longer arm could sweep better, but required to 
be extended from the center of the robot. 
 
A one way-valve retrieving mechanism for Rbot was pursued, made of a one-directional buckling 
configuration such as a sideways U-shaped measuring tape. This allowed the ball to be retrieved without 
any actuators, but depositing the ball to Gbot proved difficult. There needed to be a resistive force from 
Gbot to remove the ball from Rbot, but providing any such force would also shift Gbot by its castor 
wheel, according to Newton’s third law.  
 
Potential energy was required to be stored so that no force would be required from Gbot to retrieve the 
ball. This led to the use of a ramp to pickup and drop the ball. After surveying the game fields the final 
competition would be held on, dropping off the ball from the ramp proved inconsistent. The fields were 
not level, with local divots that would attract the ball and prevent it from rolling into Gbot’s receiver. 
Placing the rendezvous point closer provided other issues such as Rbot bumping into and getting caught 
in Gbot’s retrieving spot, leading to irreparable states requiring resets. Ultimately, interaction between 
the two robots was not adequately solved and proved to be the largest point of failure as Rbot was able 
to retrieve all the middle hopper balls, but could only successfully transfer 1 to 2 balls per game and 
Gbot was able to play all the balls it successfully received. 
 
Theoretically, when Rbot turned 0 degrees to face Gbot squarely, the ball should roll down straight into 
Gbot, but that did not happen during testing and actual game play.  
 
With more time, a sweeper arm at Gbot’s retrieving spot would have been explored, as well as a 45 
degree coned IR sensor near that region to detect Rbot’s presence. The sweeper arm would extend the 
retrieving area a great deal and would not increase the navigation difficulty by increasing turning radius 
since it could be at different heights from Gbot’s other components, and be normally sheathed. 
Alternatively, the one-way-valve and a slope from Gbot could have been explored so that Rbot deposits 
the ball when it drivese into the slope, with the ball falling down the other side of the slope into Gbot. 
 

3.2 Sub-system Level 
Implementation of the Electro-mech subsystem will first be explained, followed by the circuitry sub-

system, and lastly the microprocessor sub-system. 

3.2.1 Electro-mech subsystem 

The design of both robots were dimensionally constrained by the store bought chassis kits, as it was the 

very first components acquired. This resulted in a space conscious design of all subsequent parts, not 

limited to just electro/mechanical components. A figure of the chassis used for both robots is shown 

below. 
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Figure 30 contents of store bought “Magician” chassis kit. [12] 

The chassis measure 13cm X 17cm. Components were constructed with this as a basis. Construction of 
the stock chassis presented no difficulty, as M2 nuts/bolts were provided as well as threaded spacers. 
This also made attachment of custom parts easier as there were many hole/gaps on the chassis itself.  
 
For parts of a specific shape, one that cannot be store bought. Such as a U-Bracket, 3D printers at 
Gerstein Science MAD lab were used to facilitate construction. Dimensions were measured beforehand 
and designed on AutoDesk Inventor software. These files were easily exportable to .stl and fed into a 
Replicator 2 3D printer. Challenges arose when attaching these parts, but were easily mitigated through 
the use of nut/bolts in conjunction with hot glue. 
 
Because of the accuracy with which the parts were printed (~1mm), many components were fabricated 
exactly, and those that did not work were sanded or drilled into to make attachment easier. This means 
most challenges were to find a way to attach components suitable to their function. 

3.2.1.1 Attaching Components 

While most component were able to attach through bolting it or it’s mount onto the chassis, some parts 
required holes on the chassis where there were not any. The drilling of these holes is not difficult, the 
challenge arises in keeping the structural integrity of the frame intact. As we learned once that a power 
drill generates too much torque for the brittle frame to support, thereby snapping it. Holes were then 
drilled at low speed with the rotary tool from then on.  

3.2.1.2 The ball retrieving mechanism 

As shown in previous pictures, the Rbot uses a scoop to intake the ball, and a “sword” gate attached to a 
serval to pen the ball in. This system was easily constructed out of stock parts available from the 
machine shop, and quickly attached using balsa wood and hot glue. In manually driving the robot into a 
hopper we first found that the scoop was too sloped and pushed balls out, this was adjusted by bending 
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the sheet metal more. However, in ball transfer, the less sloped scoop gave the ball less potential 
energy, and made transfer from Rbot to Gbot inconsistent. 

3.2.1.3 The ball transfer or “handshake” 

To transfer the ball, we took upon our initial experience of using a circuit wire laid across the floor to act 
as a potential barrier to accept balls but keep them inside. This idea has worked well with the minor 
modification of the barrier size through using twine (see Figure 31) instead of wire. When Rbot open the 
gate, the ball rolls down the slope, over the potential barrier and is kept in place for Gbot to lift it. In 
testing manually this mechanism worked consistently, however upon playing on the gameboard, we 
noticed the slight slope of the gameboard counteracted the kinetic energy given to the ball by our 
sloped scoop, resulting in a few missed balls. 
 

 

Figure 31 Picture of base of lift mechanism, foam/bristle “pusher” in white, anti-jamming bristle boxed in red, and usual 
cause of jamming marked by blue star. 

3.2.1.4 The ball lift mechanism 

The main actuator of the lift is a chain driven by 3V-6V motor. As the chain rotates, one link has attached 

a mount that connects to a broom bristle/foam assembly which pushes the ball up a U-tube structure 

comprised of 3 dowel pieces and 2 3D printed U-Brackets. Construction was facilitated by access to a a 

aluminum C cross sectioned tube. Main difficulty of this mechanism arises during activation of the lift, 

when the bristle/foam pusher is just about to reach the ball; the ball jams due to the angle of the force 

being applied (see figure 31). This was quickly resolved by attach more bristles to the foam at a 

perpendicular direction, thereby pushing the ball into a more favorable position before the pusher 

applies most of the force. 

3.2.1.5 Possible improvements 

From gameplay experience, our team has reflected that a critical point of failure was the “handshake” or 
ball transfer between Rbot and Gbot. The mechanisms described above is sensitive to errors in position 
and angle. A better transfer would have more tolerance of these almost certain errors. Additionally, 
instead of using the stored potential energy of the ball, to consistently transfer the ball regardless of the 
level of the board we would implement another servo in place of the scoop, and actively push the ball 
when desired. A more drastic change, would be to combine both robots into one, entirely nullifying the 
handshake issue. 
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In construction, we would first consider the necessary components that would be in the robot, then 

make an informed decision about the shape and size of the chassis. In retrospect, using store-bought 

kits limited our scope of investigation unnecessarily, as a custom frame can be built to support more 

components or mechanisms that were ruled out by the small frame. 

3.2.2 Circuitry Sub-system 

This section will summarize the component testing and justify why the sensors on the final robots were 
chosen. Some of the difficulties will be explored in the component selection section. Finally potential 
improvements to the circuitry will also be discussed. 

3.2.2.1 Component Selection 

This section will summarize the component selection process for the following sensing tasks: 
 Sensing lines on the game field 
 Sense if robot has gameball 
 Sensing distance from game wall (G-bot) 
 Sensing ball played in game board 

Sensing lines on the game field 

Two possible sensors were considered for use when detecting lines on the game field. The first was an IR 
Proximity Sensor (Vishay TCRT5000) and the second was a photoresistor with an LED. Their advantages 
and disadvantages are summarized in the table below. 

 
Table 7 Advantages and disadvantages of the IR proximity sensor and Photoresistor for detecting game lines 

Sensor IR Proximity (TCRT5000) Photoresistor 

Advantages Very large difference in reading between 
black lines and white board (~800-900 vs. 
~200-300 for Photoresistor) 
 
Sensor contains both emitter and 
detector, easier to mount and position 

Able to detect red line 
 
Slightly cheaper (LED + 7mm 
Photoresistor is about 15 cents cheaper 
than IR proximity module) 
 
Filters can be used to enhance detection 
of specific colors 

Disadvantages Unable to sense red line 
 
Filters cannot be used to adjust detection 
of specific colors 

Less significant change in readings for 
black line and white board 
 
Very susceptible to changing ambient 
lighting conditions. Adding LED reduces 
but does not eliminate effect 
 
More difficult to mount (LEDs must be 
mounted next to Photoresistor) 

 
R-bot’s primary method of line detection uses three IR proximity sensors to detect the line and update 
our heading. However, it also has a Photoresistor (with an LED) to detect the central red line to update 
its position on the gameboard. We chose to us IR proximity sensors as the primary method of detecting 
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lines because they were more reliable than the photoresistors. They provided a larger change in 
readings and were not susceptible to external lighting conditions. Since R-bot was doing most of the 
driving and required the more accurate navigation system, we decided to use the more reliable sensors. 

 
On the other hand, G-bot used one photoresistor and LED to detect game lines. Since G-bot would 
constantly be near the board, redline detection was extremely important for its navigation system. 
Therefore, the photoresistor was used. Only one photoresistor was used because the ultrasonic range 
finders were providing additional information regarding the position and heading of the robot. 

Sense if robot has ball 

Both R-bot and G-bot have to successfully complete this task. R-bot senses if it has collected the game 
ball from the hopper and G-bot senses if the ball has been successfully transferred. Three sensors were 
identified as candidates for this task: IR Emitter/Receiver pair (LTR-3208E/LTR-4208), IR Proximity Sensor 
(TCRT5000), and Laser-Photoresistor pair. The advantages and disadvantages of each sensor 
combination is described in the table below.  
 
Table 8 Advantages and disadvantages of the IR Emitter/Receiver pair, IR Proximity Sensor, and Laser-Photoresistor 
combination for detecting if the robot has the ball. 

Sensor IR Emitter/Receiver pair (LTR-
3208E/LTR-4208) 

IR Proximity 
(TCRT5000) 

Laser-Photoresistor 

Advantages Very large change readings even 
when emitter/receiver very far 
apart. Readings change by 1000 
(for both black and white balls), 
separation was 5 inches 

Easier to position, 
only one module 
with both emitter 
and receiver 
No concerns about 
misalignment / 
calibration 

Very easy to reposition 
and detect if problem is 
misalignment 
 
Reliable readings, 
change of about 500 for 
black and white balls 
when separation is 
about 5 inches 

Disadvantages Difficulty to accurately position 
and recalibrate because light 
beam not visible 
Cannot easily tell if problem is 
misalignment 

Ball must be very 
close to IR proximity 
for reliable readings 
(< 1 inch) 
Very small change in 
readings between 
ambient and black 
ball 

Very small range where 
system works because 
light from laser is so 
focused, not robust 

 
Both R-bot and G-bot used the IR Emitter/Receiver pair for detecting if the robot has the game ball. They 
were chosen because they were the most robust system that could reliably detect both black and white 
game balls. 
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Sensing distance from wall 

This task is specific to G-bot and was used when navigating to the game board to ensure correct 
positioning. Two candidate sensors were considered for this task: bumper switches and ultrasonic range 
finders. The advantages and disadvantages of both sensors are summarized in the table below. 
 

 
Table 9 Advantages and disadvantages of bumper switches and ultrasonic range finder to detect the distance from the wall 

Sensor Bumper Switch Ultrasonic Range Finder 

Advantages Binary data from bumper switch is easier to 
process 
Most reliable data, no forms of interference 

Continuous data from ultrasonic 
range provides more information (ex: 
heading) 
Nicely supplements navigation by 
providing information regarding 
position and heading to update 
internal position 

Disadvantages Does not provide information above is this 
part of the robot sufficiently close to the 
game board 
To integrate with navigation, would most 
likely require driving into gameboard, 
causing wheel to slip, making navigation 
much more unreliable 

More complicated to use data input 
from Ultrasonic Range Finder 
Could give readings very different 
from internal position 
Susceptible to interference from 
other Ultrasonic Range Finders 

 
G-bot used the ultrasonic range finders to determine its position from the game wall and gameboard 
because it was the best fit with our navigation system, and provided us the most information about our 
position. 

Sense ball playing in gameboard 

This was the most difficult task for component selection and finding adequate sensors became an 
obstacle. Ultimately, two sensors were given significant consideration for this task: IR Proximity sensors 
(TCRT5000) and Laser-Photoresistor combination. The advantages and disadvantages of both are 
described in the table below. 
 
Table 10 Advantages and disadvantages of the IR Proximity sensors and Laser-Photoresistor (with filter) combination for 
sensing a ball being played in the game board. 

Sensor IR Proximity (TCRT5000) Laser-photoresistor (with filter) 

Advantages One unit, mechanically simpler to 
implement 
Very clearly detects white balls falling 

Can detect both white and black balls 
with a significant (difference ~100-200) 
Robots in the background should not be 
an issue (determined in a controlled 
testing environment) 

Disadvantages Can barely detect black balls falling, 
difference of approximately 30. 
A robot in the background would provide 
similar readings to a black ball falling, not 
robust/reliable 

More expensive, approximately twice 
the price of IR Proximity sensors 
False positives on gameboard 
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G-bot used the Laser-photoresistor combination because it gave the more reliable results. However, 
outside of the controlled environment, on the gameboard, it did ‘sense’ game balls that were not being 
played. 
 

3.2.2.2 Possible Improvements and Alternate Component Selection 

For the first three sensing tasks described and analyzed previously, the sensors worked reliably and 
were able to be successfully integrated with the design. Therefore, alternate components would not be 
selected for these tasks. However, the fourth sensing task was not completed reliably by the sensors and 
therefore is an area for possible improvements where alternate components should be considered. One 
type of sensor that was not tested but would have a high likelihood of being successful would be 
mechanical switches that would activate when a fall ball hits them. This mechanical solution would be 
able to reliably sense a ball falling. However, it would also introduce additional complexity because it 
would prevent G-bot from being able to navigate between different columns on the gameboard. To 
solve this, a servo could be used to rotate the column. In one orientation, the mechanical switches 
would be pointed away from G-bot, towards the game board, while in the other the switches would be 
pointed downwards, allowing the robot to drive back and forth between columns. 

3.2.2.3 Changes during implementation 

This section will summarize the changes made to the circuitry during Implementation and briefly justify 
each change. The changes for R-bot are listed below: 

 One of three DC motors was changed to a servo motor. 
Justification: change in design for ball collection 

 Sensing lines on the gameboard: Photoresistors to IR Proximity Sensors 
Justification provided previously 3.2.2.1  

 Reduced H-bridges from 3 to 1 
Justification: 2 DC motors can be controlled via 1 H-bridge to reduce costs (no tradeoff in 
performance), one DC motor was changed to servo motor which requires no H-bridge 

 Added emergency stop button 
Justification: Safe practice, constraint 

The changes to G-bot circuitry are listed below: 
 IR Proximity Sensors changed to Laser and Photoresistors (with filter) 

Justification: Provided earlier 3.2.2.1 
 Added IR emitter/receiver pair to detect when ball is transferred 

Justification: Provided earlier 3.2.2.1 
 Reduced H-bridges from 3 to 1 

Justification: 2 DC motors can be controlled via 1 H-bridge to reduce costs (no tradeoff in 
performance), other DC motor controlled via mofset transistor (loose ability to reverse motor 
but not important for functionality) 

 Added emergency stop button 
Justification: Safe practice, constraint 

 

3.2.3 Microcontroller sub-system: 

3.2.3.1 Debugging framework 

Internal position was crucial to communicating between the gameplay and correction systems, as well 
as between behaviour layers inside the gameplay system. To effectively test out any behaviour, a 



44 |  P a g e
 

debugging framework allowing visualization of position was required. This challenge was met by using 
Processing, which allowed easy integration with Arduino as it communicated via COM ports (same as 
Arduino), and produced easily readable maps such as figure 32 below.  
Each cycle is plotted as a dot with the colour representing the active layer, allowing for easy tracking of 
motion in conjunction with serial printing. 
 

 
Figure 32 Debugging map of an experimentation run with the returning path (path 3) being the shortest path to rendezvous 

with various active layers labelled. 

Another dimension of debugging is testing out each small component in isolation. Individual debugging 
programs for optical encoders, IR sensors, sonar, H-bridge drivers, PID controllers, gate opening, ball 
lifting, ball sensing, and boundary avoidance allow better tracking down of bugs. Each can be found in 
the debug directory under Arduino. 
 

3.2.3.2 Changing Environment 

The IR and photoresistor sensors are sensitive to environment factors such as lighting levels, which 
changes with both time and position. In addition, the power supply likely diminishes over time, lowering 
LED brightness. This is an especially large problem for Gbot’s sensor bar. The solution was to calibrate 
when given the opportunity by measuring the highest and lowest values over a time period (by default 
5s) and taking the threshold as low + (high-low)*THRESHOLD_TOLERANCE for each sensor, where a 
threshold tolerance of 0.5 would mean the average of high and low values. 
Gbot calibrates its sensor bar whenever it is stationary and about to lift a ball, so as to calibrate as close 
to when an expected deviation was expected as possible. 
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3.2.3.3 Key Challenges 

The largest challenge was correcting for drift error from wheel slippage and imperfect measurements, 
which created large errors in heading and led to internal position being off by one grid - at which point 
correction cannot bring the robot back to its actual position until the red line is hit. 
 
By default, Rbot selects the shortest path between the waypoints, and while that provides the fastest 
way to play the game, it does not lead to good opportunities for position correction. The solution is to 
allow human input on the sequence of waypoints: all routes are plotted by a human controller at the 
start of the game during the 3 minutes after the hopper configuration has been shown by clicking on a 
map user interface in Processing, as shown in figure 32 above. The waypoints for paths 2 and 3 are the 
same, but are arrived at in reverse of each other, with some modification to target types of the last 
target. 
 
A human can very easily select paths that would lead to easy passive line correction, staying away from 
intersections and sharp angles near lines. This solution is much easier and robust than programming in 
automated selection criteria. 
 
On the other side of the abstraction spectrum, the other key challenge was having the desired speed 
and angle translate into physically convergent behaviour. Oscillations often occurred where the previous 
cycle’s target angle and speed overturned. 
This was solved by programming in dampening factors in simulation of a “leaky integrator” where each 
trial the factor would be multiplied by 0.9 such that the magnitude after each cycle converges to 0. 
Timed pauses in the form of hard_break(activating_layer, cycles_to_break) were also added before and 
after turning in place as that is the most likely failure point for creating drift error.  
 
Another challenge was keeping track of all the behaviour layers, their interactions, and how the position 
correct system interacted with them. A total of 3207 lines of library code was written for Rbot and Gbot 
combined, the size of which by itself becomes a challenge to manage. The solution to this was to use 
version control in the form of git, with commits allowing flexible reverts in case any recent change made 
significant detriments to the system. Keeping access points in one place also lowered the complexity 
significantly - having the position correct system communicate only by correcting position and heading, 
leaving all the speed and angle control to behaviour layers, keeping all processing after arriving at a 
target to the waypoint function, and inside each behaviour dealing with how to control for speed and 
angle independently. 
 

3.2.3.4 Possible improvements 

Considering how much time the navigation system required, a simpler, less versatile navigation system 
could have been pursued. This would have led to earlier debugging of other components and 
integration. Line following with a simple sensor bar would have likely worked adequately, and getting 
the ball from the corner hoppers could have been explored.  
 
Overall, too much complexity was attempted, which while successfully met, took too much time to 
implement and resulted in not enough time to test the integration. 
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4. Project Management 

4.1 Project Schedule: Revised Gantt Chart 

 

Figure 33 Actual Project Schedule. 

Some things of note are the reduction in individual tasks such as creating electromechanical parts or 
soldering circuits onto PCB’s. This is in contrast to the extension of integration tasks (green) which 
involved all 3 roles. A longer than expected task was creating a reliable navigation framework. This 
involved the design and execution of new mechanical parts, circuits, and programs. This is reflected by 
the long green bar at the very bottom. And, though not apparent in the chart, creating navigation forced 
some tasks, such as testing 2 robots, refining robustness, to be delayed until navigation was at a state 
where the robots could navigate consistently. 
 

4.2 Division of Labour 
 
Table 11 Division of Labour for AER 201. 

Role Electromech work done Circuits work done Microcontroller work done 

Electromech -Fabrication and 
assembly of components 
and robots 
-Mechanical design 
ideation to solve new 
problems 
-Implementing new 
mechanical solutions 

-Soldering and 
debugging of some 
components 

-Helping debug some 
programs 

Circuits -Mechanical design -Planning and -Improving robot behavior 
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ideation to solve new 
problems 

executing final PBC 
board scheme 
-Soldering circuits 
-Testing and selecting 
sensors to be used 

with ideas for new programs 

Microcontroller -Mechanical design 
ideation to solve new 
problems 

-Soldering and 
debugging of some 
components 

-Design and execution of C++ 
programs 
-Improving robot behavior 
with new programs 
-Debugging programs 
using  self created debugging 
frameworks 

 

4.3 Budget 
The final budget for the two robots is $239.23 dollars. Prices are summarized in Appendix B. Receipts 
included in external file folder “Receipts” 
 

5. Conclusion 

From the beginning, our team wanted to design a unique 2 robot solution to the problem. We hoped the 
final design would embody our values of simplicity, robustness, redundancy, and speed. And our designs 
of the ball intake, ball lift satisfied our desire for simplicity, while precise odometry supported by passive 
line detection and range sensors gave our robots redundant navigation systems. Having two robots 
working semi-parallel to each other also made the whole system work faster together as a whole, for 
they each worked independently. 
 
We’ve seen all of the above factors working in our team’s favour during the competition, when Rbot 
managed to retrieve balls from the middle hoppers, which few teams aimed to do. The robustness of 
our navigation system meant our robots could get stuck and slip for a bit with no divergent 
consequence. In all our rounds until we were sudden-death eliminated, our two robots always played at 
least 1 ball.  
 
However, there are some crucial stages along the process without which our system would not work. 
We had not anticipated the inconsistency of the ball transfer or “handshake” between Rbot and Gbot, 
nor had we thought that we might play 2 rounds with the most challenging hopper configurations, 
where a 5mm error in position could mean a successful transfer or Rbot hitting a hopper pillar. 
 
Nevertheless, our team was overjoyed at seeing our 2 robot system working together to place a ball into 
the game board. After the competition, we reflected upon all the design choices we should have 
considered in depth, such as the choice to use store bought chassis that is convenient but constrains the 
dimensions we could work with. Perhaps a better understanding of each other’s roles and design ideals 
would help us recognize these type of mistakes. In the future, our team will try to better understand the 
problem more from the other members' points of view, and hopefully act and think in unison to prevent 
any error one member may commit. 
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Appendices 

Appendix A: Engineering Drawings of 3D printed parts, name of parts in title 

block on lower left. 
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Appendix B: Budget and Bill of Materials 
 
Table 12 Complete list of materials used 

Item Quantity Cost Source 

Sauder 1 $2.00 Active Surplus 

Tape 1 $1.00 Active Surplus 
Filter 1 $0.50 Active Surplus 
Sainsmart Mega (blue) 1 $32.00 Amazon 
Sainsmart Mega (blue) 1 $28.00 Amazon 
DC Motor 5 (4 from 

kits) 
$3.58 Project Kit 

IR Proximity Sensor (TCRT) 3 $3.23 Creatron (look for receipt with 10 
TCRT sensors 

Breakbeam Sensors 4 $7.25 Digikey 
Photoresistor 9 $18.81 Creatron 
H-Bridge 2 $9.00 Project Kit 
Resistor ~34 $1.70 Project Kit 
Pushbutton 2 $0.50 Project Kit 
Red Buttons 2 $3.39 Active Surplus 
PCB Protoboard 2 $8.02 Creatron 



53 |  P a g e
 

Laser Protoboard 1 $0.68 Home Hardware 
Diode 1 $0.25 Project Kit 
Mofset Transistor 2 $3.00 Project Kit 
Battery Snap 2 $0.56 Creatron 
Pin Holders 2 $0.32 Project Kit 
3 Pin Holder 1 $0.44 Creatron 
4 Pin Holders 2 $0.95 Creatron 
Lasers 7 $8.40 Ebay 
Ultrasonic Range Finders 1 $3.24 Amazon 
Ultrasonic Range Finders 1 $6.00 Amazon 
Servo Motor 1 $7.00 Project Kit 
IR Sender/Reciever 2 $3.16 Creatron 
LEDs 6 $3.00 Project Kit 
Chasis Kit 2 $42.20 Canada Robotix 
Wiring 1 $7.00 Home Hardware 
Batteries (9V) 2 $5.27 Canadian Tire? 
Batteries (AA) 8 $6.88 Canadian Tire? 
Elevator (includes dowel piece, chain, 
and sprockets) 

1 $8.48 Miscellaneous 

3D Printing 1 $11.87 Gerstein Science 
Sensor Bar (Materials) 1 $0.56 Active Surplus 
Robot Total  $239.23  

 

Appendix C: Power Draw of LEDs, Photoresistors and Phototransistors. 
The LEDs, Photoresistors and Phototransistors are all connected to +5V and ground via a 
resistor that is in series with it, as shown below. 
 

 
 
Let the resistor in series have the value          , and let the LED, photoresistor or phototransistor have 
the value      . Since the resistors are in series, the overall resistance can be described by        

               . The current through the resistor and circuit element is given by   
 

 
. The total 

Power Drawn can be found using      . 
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Therefore, we use an upper bound estimate of the power drawn by each component by using the power 

that would be dissipated by the resistor without the circuit element. 


