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Executive Summary

This report represent a half years worth of hard
values. Our design is distinguished by distributing the game play to two robots, rethevéRbot) and
gameplayingbot (Gbot), and the sophisticated rigation system that links the two together. In this

report, we present our design process and iterations that resulted in the refinements and details

necessary for interacting two robots in addition to playing a game with randomized elements requiring
robust navigation. Specific topics include the PID velocity controlled navigation system supplemented by
line correct, the decision to use off the shelf chassis kits, and the results of extensive testing of sensors

to detect the game state. In addition, we ptide details about the materials, sensors, programming,

and methods of construction used.

I n the i mplementation section, we detail the | ogi
mechanisms of the electromechanical system. Topics irstgon include the tests conducted to find

the best sensors, a graphical map user interface for arbitrary waypoint setting via serial writing and
debugging, and physical debugging frameworks, including a mockup of the game board and hoppers.

In projectmanagement, we highlight the difference in expected time to completion relative to the
actual time taken for integration tasks. A table then summarizes the work completed by each role, as
well as the crossover of responsibilities among the different ralbgn we justify our total cost of
$239.23 with a bill of materials in appendix B.

To conclude, we reflect upon the lessons learned from undertaking a 2 robot design, and consider the
unnecessary constraint we set on our robots by using a off the diedkis, and discuss methods to
avoid such pitfalls in the future.
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Symbols and Abbreviations
Rbot: The balfetrieving robot

G-bot: Thegame playing robot
LED: Light emitting diode
PID: Proportional, Integral, Derivative (a control technigque)

Break beam is synonymous to phatdgerrupter
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1. Design Process

This section will provide backgroundammation regarding the project, by summarizing the task to be
completed, highlighting the key components of our design, describing our design values and the
performance metrics being used to evaluate our design. In addition, it will summarize the bawkgrou
research we conducted and our brainstorming process.

1.1 Gameplay Strategy

For the AER 201 competition this year, each team had to design and prototype a robot that could
autonomously play a neturn based version of Connedt The game balls (ping ponglsamust be

collected either from corner hoppers at predetermined locations or from central hoppers in random
locations. Each corner hopper holds 4 balls and each central hopper holds 7 balls, allowing each team to
play a maximum of 22 balls.

The game fial is split into two halves and the robots are confined to their respective halves, each of
which contains 4 hoppers and 22 balls. A grid 20cm x 20cm grid is painted on the field. All of the grid
lines are black, except for the red centre line that is pabeular to the game board. An annotated
diagram is shown below in Figude

Lastly, a team would receive one point for every ball played, four points for each of their Gdsnect
and | ose two points for -4ss.ach of their opponent’ s

Red Centre Line

( Ot )_ Central

OB §

A4 R S
G+—o )
Widl)

I
Corner

160 cm

Figurel Annotated Gamefield
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1.2 Our Design

To accomplish the task previously described, we decided to go with a two robot design. The first robot,
RBot, was designed to retrieve balls from the hoppers and deliver them toatensl robot, GBot, at a
pre-determined location, known as the rendezvous point. At the beginning of the gaiiet Gould

navigate from the starting position at the back, to the game board. Here it would play the balls retrieved
by Rbot and monitor if the opposing team played any balls. From constant game board sendirg, G

can keep track of game state and therefore play intelligently.

1.3 Design Values
At the beginning of our design process, we, as a team, identified the design values that we believed
would be representative of a good robot design. They are listed and described below:

1. Simplicity- a modular design where each component has a specific task. Minimize the number of
tasks per component and complexity of control required for successful @recEnsure that all
components can be tested independently to ease debugging.

2. Redundancy the robot should have ways to verify and correct primary system. For example,
odometry can specify a position and heading, but these should be updated by a seceypstam
such as line detection

3. Robustness and Toleranedesign should allow for error and the robot should still be able to
complete task under uncertainty. For example, to collect the ball from the hopper, the robot should
not have to be perfectly pasbned

4. Speed design should retrieve and play balls as fast as possible to maximize points scored.

1.4 Performance Metrics
Performance metrics were derived from the constraints identified in the course manual, the scoring
system, and our design valuefiey are shown below in Table 1.
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Tablel Performance metrics to evaluate robot.

Objectives Metrics Constraints Goal Criteria
maximizeballs " number of balls retrieved > 1 14 (1 more is
retrieved (speed) in 7 min every better
30s)

consistent play percent of retrieved balls N/A 100% moreis
(robustness) played (%) better
minimizesize (speed) dimensions < 40x40x40 cm each N/A smaller is

(cm x cm x cm) dimension better

independently
minimizeweight total weight (kg) <3 kg N/A lower is
(speed) better
minimize cost cost (CDN) < $250 N/A lower is
better

minimizeinternal state maximum number of >0 1 1is best
modifiers (simplicity, functions in which the
robustness) sameinternal state is

modified
maximizetolerance of maximum error with >0 5cm higher is
position (robustness)  correct play (cm) bettter
minimize number of number of resets <2 0 lower is
resets per game better
(robustness)

1.5 Background Research
We began our design process by decomposing the overall taskveterfialler tasks. The functional
decomposition is listed below:

Grabbing the ball

Lifting and depositing the ball
Moving and navigating
Locating dispensers

Reading game state

ok ownhpRE

For each of the five tasks listed above, reference designs were identified euwliefly described below
in Tables 23 and 4
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Table2 Background research conducted for grabbing the ball and lifting and depositing it.

Function Reference Design 1

Reference Design 2

Reference Design 3

Grabbing the Ball

Lifting and depositing the ball

Scoopig the ball

Sweeping the ball
‘@

1§

Figure3 lllustration of rotating
arm to collect (sweep) bal

Figure2 Scoop manipulator from VE Advantages:

robotics.
Advantages:
9 Few moving parts
1 High tolerance
Disadvantages:
9 Makes ball transfer
difficult
i Friction between ground
and robot (external force
could complicate
navigation)

Vacuum
A fan could be used to creat
a pressure differential that
would suck the ping pong
ball up. It would then be
ready to be played
Advantages:
9 Quickly raise the ball
Disadvantages:
9 Require significant power
9 Would still require
another component to
play the ball

1 Tolerance of position

9 Securs ball in a precise
location

Disadvantages:

9 Can be difficult to remove

1 Significantly increases
turning radius of robot

9 Introduces asymmetry
(rotating are on one side
of robot)

Conveyor
Continuous loop to move
objects in one direction.
Variation would use a
‘“paddl e’ t oanl
inclined plane
Advantages:

9 Robust

9 1-way looped operation

Disadvantages:

1 Requires multiple moving
parts

i Structure may be heavy

claw

Grabbing the ball (

Figure4 Claw manipulator from
VEX robotics.

Advantages:

9 Prebuilt system

9 Bidirectional

9 Secures ball in precise
location

Disadvantages:

9 Requires more moving
parts

1 Requires precise
positioning

Elevator

Similar to conveyor method,

special carriage would raise

the ball to game board

height. Actuated by motor

winding a sting via a pulley.

Advantages:

9 Simple vertical motion

9 Multiple reference designs

Disadvantages:

9 Many moving parts

9 Structure may be heavy

9 Less robust if ball
misbehaves, no easy
recovery
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Table3 Background research conducted farovingand navigation, and locating hoppers

Function Reference Design 1

Reference Design 2

Reference Design 3

Moving and navigating

Locating hoppers

Line Following
Simple navigation system
requiring only some type of
photo sensor. Approach
feasible because of grid on
game field.

Advantages:

1 Simple and proven
implementation

Disadvantages:

I Resolution limited by
width of line

9 Accurate movement in
units of 20cm and 90

9 Likely to get completely
lost if robot deviates from
line

Do not use central hoppers
Collect balls only from the
corner hoppers whose
positions can be hard coded

Advantages:

1 Simplest and most
reliable solution

Disadvantages:

9 Maximum 8 balls can be
retrieved

9 Balls farthest from game
board

Dead reckoning with
odometry
Navigation system t@&nt on

incremental updating

position by integrating
velocity over a time interval.

Wheel encoders are used to

measure velocity

Advantages:

9 Allows arbitrary motion as
opposed to line following,
robot can take more
direct paths

1 More robust, can still
function without grid lines

Disadvantages:

9 Small errors accumulate,
causing large drifts and
errors in heading angle

9 No way to correct for
robot drifting

9 Performance dependent
of resolution of encoders

Keypad Input

Use a keypad to input

locations of central hoppers

Advantages:

9 Simple scheme for
inputting central hopper
location

Disadvantages:

9 Limited information input

9 Requires keypad to be
included in final design

1 May not be able to double
check which buttons were
pressed

Wall Following
Robot maintains a pre
determined distance im
the wall to navigate and
drive straight

Advantages:

1 Simplest navigation
implementation

1 Very little processing
required, therefore can
probably drive faster

9 Automatically adjusts for
external environment and
can automatically
recalibrate

Disadvantages:

9 Cannot reliably access
central hoppers

9 Must travel maximum
distance

Serial Writing

Use Processing to provide

information to robot. Does

not require reuploading
code

Advantages:

9 Large amounts of
information can be
provided to robot

9 Can visalize information
provided (graphically)

Disadvantages:

1 Requires laptop and more
code to be developed and
tested
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Table4 Background research conducted feensing game state.

Function Reference Design 1 Reference Design 2 Reference Design 3
No game sensing Sense only top row Full game state sensing
Do not sense game state or Sense only the top row. Sense the locations of all

game balls. Always deposit Would always determine if  balls that have been played.
ball in the same column or a there is space to play in a

% random column specific column Advantages:
17 1 Optimal gameplay,
g Advantages: Advantages: maximize points scored
o 9 Simple design, no sensor 9§ Still mechanically simple Disadvantages:
=y required 9 Avoids playing bain 1 Most complex solution. If
@ Disadvantages: column that is full gameboard not being
- 9 Cannot play intelligently Disadvantage: constantly monitored,
1 Cannot determine when  Does not permit either 42 sensors requirec
column is full, would not intelligent gameplay or moving sensor bar

get points for putting ball
in column that is already
full

1.6 Conceptualization
This section will summarize our divergence, convergence, and decision making processes.

1.6.1 Divergence Process

A s

Two techniques were usedtoexghn our desi gn space, ‘Challenging

I n the first technique, ‘Challenging Assumptions
solutions. Later, the applicabil iarervalodted,aral ut i ons
necessary adaptations to the new ideas were made.

general version of the task was articulated and reference designs were researched.

1.6.2 Convergent and Decision Making Process

The divergene process described above creates multiple solutions that are unrealistic, or would be too
difficult to implement with the given constraints. Therefore, the first step in our convergence process is
to eliminate infeasible and unrealistic ideas. The renmgjideas are further explored through sketches,

and low fidelity prototyping. After a better understanding of the potential solutions has been developed,
a pugh chart is used to explore the advantages and disadvantages of our solutions. As a team, we used
our design values and engineering judgement, informed by the pugh chart, to make our decision.

2. Technical Description
Technical description outlines in detail components used, programs deployed, and subsystem
interactions within the robot.
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2.1 System Level Description

When the game first starts, both robots are calibrated against the game field for five seconds. Then,
human controllers plot the waypoints for navigating initially from the starting position, and the path for
retrieving balls from the hoppers ugj the map user interface from Processing, communicated to the
Arduinos via serial writing. Once this is completed, the USB serial cable is disconnected and the robots
are set in their starting positio(see figure 6Rbot has a 5 second delayogrammed into it to avoid

collision with Gbot when both attemp to turn in p
with the exemption from retrieving from hoppers.
game board, hugging the Wal but |l eaving enough room for turning

automatic sonar correction activates to guide it to the desired distance away from the gameboard while
its line correction brings it right past the center red line to the corrembordinate. Rbot follows first the
human plotted initial part to navigate away from the starting position to get into an advantageous
location, then finds the nearest hopper and approaches it using the second path the human plotted. As
Rbot approaches thkopper and the ball sits securely on the ramp, break beam sensors located on the
side of the gate are broken, and signifying the secure possession of the ball, allowing the servoed gate to
close. Rbot then backs up to a distance safe enough to turn @e pédter which it heads towards the
rendezvous point to deposit the ball to Gbot. Gbot detects the deposited ball via an IR break beam,
navigates to the column giving the highest point if played, then lifts the ball up while watching for the

ball to dropwith its photoresistor and laser sensor bar. After it plays the ball, which it knows by the

length of time since lifting and if it detects a ball drop in the appropriate column, Gbot returns to its
rendezvous point to away more balls from Rbot. Figubee | ow s how t he graphical f
specific and shared behaviours and interactions
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Figure5. System level interaction of various modules

The initial position of the two robots is shown below.

Align wheel on line

- Align wheel on line
e
on line

Figure6 Map showing alignment of ot and Gbot, with coordinates
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2.2 Full Operating Procedure
The full operating procedure has been subdivided into 4 sections:

w NN e

Before arriving at game field

First 5 minutes at game field
minutes setup time

After the game (Podflight checklist)

2.2.1 Pre-flight checklis ts
The first three sections of the Full Operating Procedure are distinefligine checklists and are
displayed below.

2.2.1.1 Before arriving at game field

\Y

< <<

Check batteries: (Bot and Gbot)
1 Replace 9V battery if measured voltage is below 8V
1 Replace 4 ARatteries if measured voltage is below 6V
Test encoders: dBot and Gbot)
1 Run encoder program, ensure all 4 break beams are working
1 Pushin all 4 wheels
Check bottom sensors, reposition/realign if necessafgdRand Gbot)
Check orientation of sensombincase it was nudged/displaced-i6Gt)
Check position of elevator and sonarljGt)

2.2.1.2 First 5 minutes at game field

\%
\%

\Y,

Test bottom sensors, ensure they can detect game linds{Rnd Gbot)
Upload code for ot
1 Give Gbot coordinates for navigtion to game board
1 Double check that correct coordinates have been given-bmG
 Calibrate:
o Plug in battery power to Arduino and remove USB serial port
o Calibrate robot (3 second delay from uploading path to beginning of calibration)
1 Gbot is now game redy
Upload code for ot
1 Testred line detection threshold
1 Have processing open and ready to communicate witoR

2.2.1.3 Three minutes setup

Vv

< <<

Place &ot in starting position

Input path that Rbot should take via Processing

Connect battery power to-Bot, then disconnect USB cable
Calibrate Poot
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V  Place Pbot in starting position, it is now game ready
VvV  Wait for game to begin, start both robots

2.2.2 Post-Flight Checklist

Check laser sensor bar-(Bt)
Check bottom photo resistor (&ot)
Check bristly rigitly (Gbot)

Check conveyor rigidity ¢Got)
Check bottom sensor bar-{Ft)
Check scoop position {bot)

Check sword/gate rigidity (Bot)

<K<K <K<K<LKKLK KL

2.3 Sub-system Level Description
This section will provide full technical details for each of the threesyigiems oR-bot and Gbot.

2.3.1 Electro-mechanical Sub-system
Please refeto Appendix Aor dimensions of parts refereed.

2.3.1.1 Rbot

Rbot uses maoff the shelf chassis kit (the Magici@tnassis by SparkBuwhich includeswo 3-6V

motors, 2 wheels/hubs witfitting shafts holes, 4 mounting pieces to secure the motor, 1 castor wheel,
1 4xAA battery pack, and assorted nuts and bolts. Sharp Optical encoders are used withted

encoder wheels (seEigure J and mounted with hot glue onto the pigeared (béore gearbox) motor
shaft, corresponding break beam sensors are mounted on the undergitiere the wheel encoders are

- with hot glue as well.

Figure7 Raytracing rednering of encoder wheel, on Autodesk Inventor
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The arduino mga and protoboard, are attach vertically using taped elbow joints and a balsa wood block
respectively.

Rbot’' s front scoop is shaped sheet albowhcrass m, wit h
section as shown in FigureBhis figure also shawthegate mounted ora servo motor which isitting

on a support arnthat issecuredoy a screw and hot gluehe goop is pressured fitted and hot glued

into soft balsa wood mounted on the frame which is also mounted using the same method.

Figure8 Photo of Rbot front section, scop outlined in orange, and friction fitted to hot glued balsa wood in blue box.

Over the internal circuitry of Rbot sits a glued on foam covered particle board casing constructed using 2
selfthreadingscrews, and 4 pairs of M10 bolt/nuts connected to a elbow joint acting as the bracing.
This whole casing sits atop a velcro layer fase=of removal and attachment. It is shown in Figure 9.
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Figure9 Foam covered particle boardasing, comprised of 3 pieces kigbgether by 2 bolts (green) and 1 screw (yellow on
each side). Velcrgs attached onthe bottom (purple box)

Underneath Rbot, there sits a 3D printed sensor support §laown in Figure 1@neant to hold 3 IR
modules, thed legs attach to the yellow gearboxes using hot glue. The sensors are attached to the bar
using hot glue.
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L o R T N e T R
Figurel0 Raytracing rendering of IR bar. IR sensors hot glued in direction of the 3 blue arrows.

2.3.1.2 Gbot

Gbot useghe same chassis, motors, and wheels as the Rbot, save for a metal ball bearing castor. Below
Gbot, there sits a balsa wood block functioning as the sensor bar, it has hole for the a 7mm
photoresistor with a white LED. This block is attached to the yajlavboxes using hot glue. In

addition, Gbot has two paidle board mounts flush withstlong midplane, one at the back and one at

the front of the robot. These are bolted to frame with a pair of M2 bolt/nuts. The particle boasda L

shaped cross sectip shown in Figure 1Jand has a strip of velcro attached for securing the ultrasonic
sensors.

Figure1l1 Photo of front sonar bar, with support highlighted in red, and velcro interface in green.
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Figurel2 Ball lifting mechanism. Chain Support in orange, ball support arm in blue, foot in green, and chain mount/bristle
assembly red.

The ball lifting mechanism (Figure 12) of the Gbot consists of 4 pillars supporting 2 of 3 sowel pieces
forming a U shapedmucture. This is supported by two 3D printeeBdackets (pink parts). Above the U
tube structure sits the chain mechanism actuating the lifting. The chain is composed of a C shaped
aluminum tube with a plastic sprocket mounted at each &mtold the metd chain. hiese are

extended by 3D printed sprocket couplers to create a 2 point suppsrshown in Figure 1Bhe top
coupler is connected to a 38V geared motor. Because this motor on rotatesrity onedirection, the
torque produced is countered bylang M8 bolt cantilevered from the aluminum sectieeé Figure 13

19| Page



Figurel3 Topview of chain, showing sprocket (orange), sprocket coupler (green) and cantilevered bolt (blue) to counter
motor rotation

On one chain link, th€hain mount (see cad) is hot glued to a scratch surface (for better adhesion) and
4-5 bristles are glued into two holes on the side of the chain mount. More hot glue is added at the base
of the bristles to add support. White packing foam is cut into aamegle and stuck through the bristles;
additional bristles are stikconto this platform at 70to prevent jamming of the ball.

.

.

S e an] o [aemnel
Figurel4 Raytracing rendering of Chain mount, which attaches foam/bristle assembly to the chain

The duminum tube is supported by 3 3D printed arms mounted to 2 of the 3 dowel pieces forming the
U-tube structure. The arms snap on to the round dowels, but are bolted by 2 M8 bolts to the aluminum
section.
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At the base of the Wube structure is attached 2C3 printed curved arms to hold a IR break beam pair, a
string to pen in the ball, and additional bristles to prevent the ball jamming.

The Gbot includes also a sensor to detect a ball dropping down a column, this is comprised of a 30cm
long plywood piece ih 7 holes, each hole accommodating 1 laser module and 1 10mm photoresistor
covered by a red plastic filter to amplify signals (see Figure 15). The whole sensor bar is hot glued to the
U-tube structure described above using 2 particle board tabs andstiplarm.

Figurel51 of 7 sensor pairs on the sensor bar

2.3.2 Circuitry Sub -system
This suksection will provide the technical details for the circuitry subsystem for betotRind Gbot.

3.2.2.1 Circuity Sub-system R-bot
Figue 16 shows the circuitry and sensors .
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Figurel6 All circuitry, sensors and circuit components inti®t.
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Table5 All circuit elements in Fbot that are powered by the Arduino and their power duv.

Circuit Component Product Number Quantity Power Draw per Total Power
Component Draw

Servo Motor SMS2309S 1 0.00
Emergency Stop Switch 1 0.00 0.00
IR Detectors TRCT5000 3 0.10 0.30[1]
Visible Light LEDs 5 0.11 0.57
Photoresistor OPTRI00010 1 0.00 0.00
IR LED LTR4208 1 0.11 0.11
IR Reciever LTR3208E 1 0.00 0.00
(Phototransistor)

Photo-interrupters GP1A57HRJO0OF 2 0.25 0.50[2]
H-bridge L293D 1 1.70 1.70[3]

R-bot Arduino Power Calculations

The total power draw of all the components powered by the Arduino is 3.19 W. However, we also need
to find the power draw of the Mega. When tested (by a third party), the Arduino Mega drew 35mA from

a 9V power spply, therefore consuming 0.315 [4/]. Therefore the total power consumption from the

Arduino, Sensors and Integrated Circuits is 3.5W. Over 7 minutes, a total of 1470 J of energy would need
to be provided by the 4AA batterien addition, assuming that each battery provides a potential
difference of approximately 1.5[Z], the current draw from each battery would be approximately

583 mMA. Referencing the dat a sslamp®imatelaiZOmB)d mA ,

t

approximately 3 hourf2]. Therefore, the 4AA Energizer batteries should be able to provide the Arduino,

sensors, and integrated circuits with sufficient power for multiple rounds.

R-bot Motor Power Galculations

The motors to drive Rot were powered by a 9V Energizer Industriaddll battery. The maximum
power draw from each matr was 1.125 W (250mA at 4.59%). Therefore, the maximum power draw

from both the motors is 25W, or 250mA of current supplied from the battery. According to the data

sheet, at a discharge of 300mA, the capacity is just under 400 mAh, esiit@bver 1 hour of run
time [4]. Therefore, the 9V Energizerdell batterly should be able to provide sufficient energy to the

motors for multiple rounds.

3.2.2.2 Circuity Sub-system Ghbot

Figure 1&hows the circuitry and sensors iAGt. Only 3 of the 7 laser modules are shown to help

simplify the diagram
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Table6 All circuit elements inG-bot that are powered by tle Arduino and their power draw.

Circuit Component Product Quantity Power Draw per Total Power
Number Component Draw

Emergency Stop Switch  N/A 1 0.003 0.0025
Visible LED N/A 1 0.114 0.14
Photoresistor 8 0.003 0.02
IR LED LTR4208 1 0.114 0.14
IR Reiever LTR3208E 1 0.003 0.0025
(Phototransistor)

Photointerruptors GP1A57HRJOC 2 0.250 0.5[2]
H-bridge L293D 1 1.700 1.7[3]
Lasers N/A 7 0.005 0.035[9]
Ultrasonic Range Finders HC SR04 2 0.075 0.15[10]
Mofset Transistor BSH105 2 0.417 0.834[11]

G-bot Arduino Power Calculations

The power draw of all Bot components powered by the Arduino is 3.47 \§.déscussed previously,

the power draw of the Arduino Mega is 0.315[W. Therefore the total power consumption from the
Arduino, Sensors and Integrated Circuits is 3.79W. Over 7 minutes, a total of 1591.8 J of energy would
need to be provided and each of the 4 AA Energizer batteries. Assuming that each provides a potential
difference of 1.5 volts, each battery would have to provide approximately 631.7mA, and therefore
should last just under 3 houfg]. Therefore, the 4AA Energizer batteries should be able to provide
sufficient power for the Arduino, sensors, and integrated circuits for multiple rounds.

G-bot Motor Power Calculations

The circuitry of @ot included three DC motors, 2 for driving tivbeels and one for the elevator.

However, at one time, at most two motors were activated because the robot was either driving or lifting
the ball, but not simultaneously. Therefore the calculations from tHRMotor Power Calculations

can be applied, r@d we expect the battery to have about 1 hour of run time, sufficient for multiple runs.

Explanation of Power Calculations
This section will summarize how the values of the power draw per component were found or derived.

The power draw of the following agponents were found from their datasheets:
Vishar IR Proximity Sens$6}

Sharp Photénterrupters[7]

Texas Instruments Hbridge[8]

Mofset Transistof9]

=A =4 =4 =4

In addition, the power consumption for the lasers was provided on the web page that we used to order
the lasers.
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The power draw of the following components was derived from information from their datasheets. For
example, if maximum cuent was provided, the power consumption was found using @ O
where V was +5V if it was being powered by the Arduino.

1 DC Motors
T Ultrasonic Range Finders (HC SRD2))

Lastly, the power drawn by the LEDs, phot@stsis and IR phototransistors was calculated by assuming
that all their resistances went to zero and using the power that would be dissipated across the resistor.
The justification for this technique is provided.iRor example, an LED is cented in series with a 220

ohm resistor and the power drawn by LED was assumed to be the power drawn by the 220 ohm resistor.

These two circuits are shown below. The power is then calculated Gising-.

LED
2200
2200 ' d
o+ T
T Figurel19 Circuit used to calculate power draw of an LED

connected to Arduino Power
Figurel8 Circuit for connecting an LED to Arduino Power
Using the method described above, the powleaw of each LED was found to be 0.114 W and the
power draw of each photoresistor and phototransistor was found to be 2.5 mW.

H-bridge circuitry

An Hbridge was used to control the two motors turning the wheels. For each motor, there was an
enable pin andwo control pins. The control pins were used to control whether the wheel rotated
clockwise or counter clockwise. The enable pin was pulsed with modulation to control the total current
provided to each wheel. This gave us more control, allowing us towseID controller and the various
applications of it.

2.3.3 Microcontroller subsystem:

2.3.3.1 Parallel systems

At the highest level, the logic is split into a gameplay system and a position correction system for each
robot, with gameplay run at 20Hz aedrrection run at 100Hz. The necessity of a dedicated position
correction system was determined through testing without it and the observation of accumulated drift
error from relying solely on odometry. This is due to imperfections in our measurementsaf wh
dimensions (relative sizes), momentum of DC motors, and the imperfect contact of the wheels to the
game board.

The fundamental state of both robot includes its current position (X, y, theta) with x and y measured in

mm inside an internal grid and theein radians from-ft, m] where 0 i s oriented f
Each robot also maintained a stack of targets, each with an absolute X, y, theta, and type. Its theta is the
desired angle for the robot upon reaching the target and its type is the egeddask to be performed
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upon arriving at the target; for its full declaration, see Appendix A. Upon arriving at a waypoint, the top
most target is popped and the next (if there exists any) target is automatically loaded, with potential
changes in behawur calculated byvaypointanduser_waypoint

The gameplay system directed all the actions of the robots, with the only communication with the
correction system being a shared internal state, from which the position correction system would read
and modifyposition and heading(X, y, theta) only. See figug® for the control flow of the gameplay
system architecture for both robots.

TR W W W W WU W W W W W WS U W W W R W W W W W W W W W W W W AR W W W W W W W W R W W W A W W W W R W W W W

Gameplay (20Hz) - subsumption architecture

rbot.priority gbot priority rbot only gbot only

0 0

avoid_boundary

get_ball play_ball

4 4

put_ball turn_to_watch

speed

(ticks per cycle)
angle

Update position from
last cycle's ticks

sets
target_| target_r pID velocity control

TR W A W W W W W W W T W W W W W W W W R W W W W W AR R TR W
R e

Figure20 Gameplay systems architecture and behaviour layers with corresponding priorities fah IRRbot and Gbot.

2.3.3.20dometry
At the start of each gameplay cycle, odometry is done to collect the ticks accumulated from the start of
last cycle. Displacement and distance are found from that through the formulas below:
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double displacement_| = dir_I* ( double )instant_tick_| * MM_PER_TICK_L;
double displacement_r =dir_r* ( double )instant_tick r* MM_PER_TICK_R;
double displacement = (displacement_| + displacement_r) * 0.5;

if (displacement>  0) tot_distance += displacement;
else tot distance - =displacement;

theta += atan2(displacement_| - displacem ent_r, BASE_WIDTH);
x += displacement * cos(theta);
y += displacement * sin(theta);

The MM_PER_TICKparameters were carefully calibrated through many trials of driving a known
distance and measuring the ticks accumulated. A negative theta represents a counterclockwise turn
from O, which is pointed “up” towards the gameboa

2.3.3.3Gameplay layers

A subsumptin architecture for the gameplay layers was used because it was best suited for the event
driven environment the robot would be in, which would be much more robust than a-fitatie

machine approach where the robot is assumed to be in a set of defilgelssin this architecture, each
behaviour runs parallel to one another with a defined priority. Many behaviours can be active at once,
such asavoid_boundarnandnavigate butavoid_boundaryvould have control as long as it is active
since it holds highepriority.

Each behaviour layer controls for speed and angle, measured in effective ticks per cycle (scaled by non
equal wheel size), and is either active or ramtive. Their declaration can be seeglow.
struct Layer {

int  speed, angle, active;

%

Layers can be activated inside itself, suchwasd_boundaryor inside other layers, such hard_turn
by navigatewhen the headingerror becomes large enough.
The layers are complementary and lead to effective emergent behavior, such as a smooth turn around

boundaries, as shown in figutd below.
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Figure21 Navigating around a boundary; the red circle is the boundary with scaled radii, white path represents when
avoid_boundary was the active layer whildlack path represents when navigate was the active layer.

2.3.3.4 Motor_control and PID - controls translated to motor output s

The layers communicate only in terms of effective ticks per cycle, which as seen in Figure #### (systems
flow chart) is selected barbitrate to create the targeted left and right ticks for the next cycle according

to the formula below

target_| = control_layer.speed + control_layer.angle;
target_r = control_layer.speed - control_layer.angle;

For a differential drive system, the angle ticks added to the left target and subtracted from the right
target completely controls navigation. A negative angle would slow the left wheel and speed up the right
wheel, turning the robot right. A zero speeddanonzero angle would cause equal speed in opposite
direction on the wheels, causing turning in place.

The targeted ticks are then converted into PWM output values by the PID controller using the

proportional error, the integral of past error, and thate of change of error to drive the-bfidge.

2.3.3.5Avoid_boundary layer

This base layer is shared by both Rbot and Gbot as the highest priority layer. The reason being that
colliding with a boundary wouldender the rest of the behaviours ineffective.

Each boundary in the array of known boundaries, which are added atman is computed for their
parameters as shown below

Boundary& boundary = boundaries[b];

double diff_x = boundary.x - X

double diff_y = boundary.y -y

boundary.distance = sqrt(sq(diff_x) + sq(diff_y)) - boundary.r - TURNING_RADIUS;
boundary.theta = atan2(diff y, diff_x) - theta;

boundary.threat = (BOUNDARY_TOO_CLOSE- boundary.distance) *
(BOUNDARY_TOLERANCHEbs(boundary.theta)) / BOUNDARY_TOLERANCE;
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The threat of a boundary is negatively proportional to the distance from it as well as being negatively
proportional to the size of the heading error. Therefore, heading square at a close target would produce

the highest threat. When any boundary threatceeds a thresholdgvoid_boundarys activated and
remains activated until that boundary is some distance away

2.3.3.6 Navigate layer

Another base layer shared by both Rbot and Gbot responsible for steering and controlling the speed en
route to most targets. It is activated whever there is a valid target and the position is more than a

immediate threshold5mm) around it. See figur22 below for a graphical representation of how a
target is navigated to.

target close (200mm)
start slowing down

ey

,
. ] Y
! target immediate (Smm)
K ! )

' stop unconditionally s

-~
e

-
.........

Figure22 Navigate target rings corresponding different distances to responses.

It turns toward the target when the heading error excts a minimum tolerance (0.03 rads), and slows

down the closer it gets to the target in order to prevent overshooting. The speed is clamped to both a
minimum value to prevent stalling and a maximum value to prevent slipping.

2.3.3.7Hard_turn layer

The last layeshared by both robots, this fundamental navigation layer turns in place by controlling
speed to be 0 and angle to be naaro. It is activated only inside timavigatelayer when either 1. the
heading error exceeds a minimum threshold (0.5 rads) wheririgrim place would lead to a better and

faster path to target, or 2. when the target is reached but the current heading is not close enough to the
desired heading at target.

The turn speed is a function of the proportion of the original turn completiedying down as the entire
turn nears completion. This is seen in the code below:
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to_turn = targets[target].theta - theta;

if (to_turn > PIl)to_turn -= TWOPI,
else if (to_turn<  -Pl)to_turn += TWOPI;

if (turn_size - abs(to_turn) < THETA_ TOLERANCE) {
if (to_turn<  0)turn.angle = - KICK_SPEED;
else turn.angle = KICK_SPEED;
return ;

}

else if (abs(to_turn) <turn_size) {
turn.angle = to_turn/turn_size * NAV_TURN * 3;
}

turn_size is defined every time therd_tum layer is activated and is the initial and expected largest
turn size. Small turns nedd be kick started with a higher than normal target since DC motors take
more voltage to start than to run

2.3.3.8 Get_ball layer (Rbot)

This layer is activated when a target with a TARGET_GET type is reached and deactivated when the
robot has sufficiently backed up enough dista28Omm after getting the ball) to clear the hoppers

and allow turning in place. This mode is a closed behaviour in that it activates no other layers and is
supposed to be activated only during a specific activity.

Its behaviour involves heading towardgetactive hopper, waiting for the ball to be in the scoop for
enough cycles (5) before closing the gate for 15 more cycles, then backing out for 250mm.

2.3.3.9 Put_ball layer (R-bot)

Similar toget_ball this layer is a closed behaviour activated when a target with a TARGET_PUT type is
reached, which in gameplay should be at the rendezvous point after the ball is retrieged tpalland

it has backed up enough to allow for turning in place.

This behaviour assumes its at the right location, so speed is 0, and turns slowly untigibhstabilizes
for enough cycles at near 0 degrees (within 0.06 radians). It then opens the gate and drops off the ball,
releasing control.

Watch layer (Gbot)

This layer, unlike the other layers, controls for more than one behaviour. Gbot needs to fiacetthe

wall perpendicularly as well as watch the game, which naturally splits into the two behaviours of
turn_to_watchandwatch_balls_dropThis layer is only active when not moving around, being activated
after arriving at the rendezvous point or algmn to drop off a ball.

turn_to watchadj usts Gbot’'s theta by turning in place un
radians) for 6 cycles. When displaced from the alignment, such as being pushed by Rbot or pushed by
the opponent robotturn_to_watchactivates again to realign itself. This behaviour is best supplemented
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by thetouch_wallcorrection from sonar, but does not require it as it operates only on internal heading.
This behaviour is illustrated in the figure below:

90% (not necessarily wall)

Figure23 Turn to watch behaviour foiG-bot alignment parallel to 90 degrees.

watch _balls drpdoes not influence navigation at all, but
of the gameboard by detecting ball drops using the laser sensor bar. A ball drop is registered as a
sufficient(> 30) sensor reading offset of only one sensor from its ambient reading for more than 3
consecutive cycles. Multiple sensors reading large offsets usually indicates reading the other robot while
non-consecutive offsets likely indicate random fluctuations

2.3.3.10 Play layer (Ghot)

This layer is activated after Gbot detects a ball in its collection area. It is responsible for navigating to the
correct column (sometimes just the middle column at the rendezvous), lifting the ball after the watch
layer has ensured Gbot is aligned aradibrated, and moving back to the rendezvous after the watch

layer detects the ball has dropped. This is all done while keeping a constant angle parallel to the wall
since the large sensor bar and close proximity to the gameboard prevents any turns

Theplay layer only considers the y position (parallel to game board, perpendicular to side walls) when
deciding when it has arrived at the target, since the x position fluctuates based on the sonar reading and
adjusting for it would require large turns.

2.3.3.11 Path selection

Arriving at a target internally is equivalent to calling thaypointfunction, which performs the job of
loading up the next target if there are any, and deciding whether to add additional targets or not based
on the previous target and thaucrent position.

Gbot’'s game strategy involves only getting to the
strategy involves three kind of complicated paths: 1. navigating to somewhere safe from the initial

starting position, 2. navigating to theppers from the rendezvous point, argl navigating back to the

rendezvous point after backing out from a hopper.

2.3.3.12 Position correct system
Since each robot has a different array of sensors, their position correct systems are also going to be very
different, as seen ifigure 24 below:
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Figure24 Position correct system architecture diagram for both Rbot and Gbot.

Both robots share a photoresistor near the center of the bottom, but use it for different purposes. As
mentioned in the circuits section previous, the photoresistor coupled withEdh ¢an detect both black

and red lines without being able to distinguish between them. For Rbot, the IR sensors cannot read red
lines, so when the photoresistor detects a line when the last black line was detected far enough away
(>35mm), Rbot is likely evthe center red line. For Gbot, its motion is simplistic enough that it does not
need this extra information and can correct on every line.

All of the correction functions are passive in the sense that they do not directly control for speed or
angle ike a gameplay behaviour layer, only updating (X, y, theta). Separating correction and navigation
allows for easier debugging and makes the robot faster since it does not interrupt the gameplay
behaviour to correct.

One condition shared by all line coct®n functions is the need to avoid the ambiguity of intersections,

as shown in figur@5 below:
b=§ INTERSECTION_TOO_CLOSE = 40mm

Figure25 Unambiguous line correction regions of a grid; where tlee correction functions are allowed to consider
correction.
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2.3.3.13 Passive_position_correct

This function is activated when a line is fully passetien the center sensor (IR for Rbot and
photoresistor for Gbot) reads no line after 3 consecutive cycles of reading a line. Leaving a line is used
instead of hitting a line since it requires conseceatcycles of being on a line prior to leaving it, giving a
point of checking for accidental readings.

The position closer to a grid line is rounded to that grid line, accounting for the line width by the
direction of movement. This essentially splits each grid into four quadrants, as shown ir2tchekw:

I

correct y
*~—p

correct x

—
correcty

correct x

!

Figure26 Passiveposition correct quadrants for which position to correct based on closest to grid.

2.3.3.14 Passive_theta correct

Drift error mostly manifests in an inaccurate theta (heading), which can be corrected by assuming a
straight path and considering the distance betweertke sensor along the wheel of Rbot first
encountered a line, illustrated and explained in the figure below.

distance between
left and right hit SIDE_SENSOR_DISTANCE

(correct_elapsed_distance) 52mm

similar
triangles

correct_elapsed_distance
SIDE_SENSOR_DISTANCE

theta offset= atan(

Figure27 Passive theta correct based on the assumption of straight paths while crossilige and using similar triangles.

The angle retrieved is a theta_offset from being normal to the line, which can be easily used to correct
for theta according to the code described below:
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float theta_candidate;

if (passive_status & PASSED_LEFT) theta_candidate = (square_heading()*DEGS) +
theta_offset;

else if (passive_status & PASSED_RIGHT) theta_candidate = (square_heading()*DEGS) -
theta_offset;

else if (hit_first == LEFT) theta_candidate = (square_heading()*DEGS) + theta_offset;

else if (hit_first == RIGHT) theta_candidate = (square_heading()*DEGS) -

theta_offset;

else theta_ candidate = (square_heading()*DEGS);

2.3.3.15Passive red line correct

As mentioned previous, a red line is indicated by the photoresistor reading a line and the last black line
being read (> 35mm) away, assuming Rbot is not going backwards. Otherwise, red line correct always
corrects the y coordinate to be close to rendezvous y (800mm) since that is the only place where a red
line is.

2.3.3.16 Touch_wall

Two sonars at the front and back @bot gives absolute position of both ends. These values are
averaged over 4 cycles and used to determine both the heading and the x coordinate of Gbot.

wall

front - back
B offset distance
SIDE_SONAR_DISTANCE
234mm

similar
triangles

front*front_ratio + back*(1-front_ratio)

GAME_BOARD_X - x

CENTER_TO_SONAR_DISTANCE
17mm

Figure28 Sonar mechanism for correction for theta agll as x

3. Implementation
This section wilbrovide an overview of system levieiplementation before looking at eadub-system
individually.
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3.1 System Level

The gameplay system rests on a subsumption architecture, with a distinctive active layer each cycle that
is the only point where speed and angle is controlled from. See figure (human plotted waypoints) below
to see how the active layer can be easily visually represented. The entire system was designed towards
ease of integrating various layers, as the coreawburs (navigation) function indepently of any

potential new layers such as getting and putting the ball, which are closed behaviours.

The general strategy for integration is testing from the lowest level up, and testing each component
individually wih the assistance of visualization from the map user interface.

3.1.1 Integrating Get and Put ball for Rbo t

Starting from the | owest abstraction | evel wup, RbD
the ramp and analyzing the direction of thelrahd how fast it reached upon hitting the ground. The
ramp’s physical design was changed three times to

velocity at the foot of the ramp, as well as the height of the ramp such that instead of pushinglthe bal
away from the hopper, simply slid underneath the ball to pick it up

Next, the servo controlling the gate was tested to find the best placement and orientation. The
orientation originally had the servoyasout8renways, bu
and was | ater mounted sideways. The simplest code
validity, with later tests moving onto which PWM values corresponded to each orientation of the servo

The IR break beam to detect the pemee of ball was tested next, particularly its placement on the servo
sideways across the ramp. The sensor performed exceptionally and did not require further.testing

The logic was tested last, after all the electromechanical and circuits potential prsthlave been
elimnated. The robot’'s internal position can be
and configuring Rbot’'s internal state to get the
navigated to the hopper from varigustarting locations and how often it failed to retrieve a ball

The number of cycles to close the gate before leaving the hopper was configured as tested to allow

enough time for Rbot to move into position before backing up

Put ball b e h #&estéed inwa similar metiood, iexceptiha state is now configured to have the
ball and near the rendezvous point where it would drop the ball. A frequent problem was not fully
orienting 0 degrees to face Gbot perpendicularly and stopping before the redéiseeached

This prompted an additionally turning behaviour inside the put layer and a seek red line behaviour
implicit for navigation, which when Rbot thinks it is at the red line but have not detected one recently, it
is internally placed further awaydm the center line to prompt it to keep going forward until it hits the
line. Adding in this behaviour seems to have guaranteed red line arrival

3.1.2 Integrating Navigatio n

The goal and innovation stated i n t hoebettheesi gn prop
foundational system that would enable all the other behaviours. Thus this was the system that the most

time was spent refining and testing.

To test each part of navigation, a mock game field with mock hoppers, as seen irfidareck gane
field) were created. Walls were also used to test
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Figure29 Mock game board and hopper for navigation and integration testing.

During the course of testing, Gbot’'s tol-arance f
consequence of its wide sensor bar. The solution was to set waypoints further awayhie wall.
Navigation’s integration came neathwithahdadinganda h t he
type. The heading is the desired heading after arriving at the target, which were importgat tball

put_ball and the watch behaviouisf Gbot.get_ballrequires the robot to be pointed towards the

hopper, the angle of which can be found by consi

way poi nt ' pat_baleeguires theorobot to be pointed towards Gbot, which would aferde 0
degrees at the rendezvous point. The watch behaviours of Gbot requires theta to be 90 degrees pointed
right so that Gbot was always kept parallel to the game board, even while driving backwards.

The type system gave informationwaypointupon ariving at a target to consider the next state. For
example, if the previous target was of type TARGET_PUT, it implies that Rbot was just able to deposit a
ball to Gbot and can go find the nearest hopper to retrieve more balls. The target type systedegrovi
some familiarity of a finite state machine which made it easier to debug.

During the cour se o fpassive_shetd cogesras fausdundeasing abletolpickRb ot ' s
waypoints that would guarantee it many opportunities to correct drift @rrbhis problem, as discussed

later in the microcontroller section, was addressed by adding in the feature for a human to select the
sequence of waypoints for each robot through the map user interface.

3.1.3 Integrating Interaction

One of the key innovations noted earlier in the design proposal was the use of two robots. As such,
interaction between the two is a key challenge. This challenge had implications on the methods Rbot
could use to retrieve the ball and Gbot could use tathié ball.

An earlier idea of a sweeper arm for Rbot to retrieve the ball was not pursued as it made navigation
asymmetrical and required the ball to be on one
radius, which made turning in pladéficult, and had the fundamental challenge of needing to trade off
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turning radius for increases in sweeping tolerance, as a longer arm could sweep better, but required to
be extended from the center of the robot.

A one wayvalve retrieving mechanism ifé&Rbot was pursued, made of a edeectional buckling
configuration such as a sidewaysshped measuring tape. This allowed the ball to be retrieved without
any actuators, but depositing the ball to Gbot proved difficult. There needed to be a resistiediom
Gbot to remove the ball from Rbot, but providing any such force would also shift Gbot by its castor
wheel, according to Newton’s third | aw.

Potential energy was required to be stored so that no force would be required from Gbot to retrieve the
ball. This led to the use of a ramp to pickup and drop the ball. After surveying the game fields the final
competition would be held on, dropping off the ball from the ramp proved inconsistent. The fields were

not level, with local divots that would attcat t he bal | and prevent it from
Placing the rendezvous point closer provided other issues such as Rbot bumping into and getting caught
in Gbot's retrieving spot, | eadi ng tacionibetweenpar abl e

the two robots was not adequately solved and proved to be the largest point of failure as Rbot was able
to retrieve all the middle hopper balls, but could only successfully transfer 1 to 2 balls per game and
Gbot was able to play all the bsit successfully received.

Theoretically, when Rbot turned O degrees to face Gbot squarely, the ball should roll down straight into
Gbot, but that did not happen during testing and actual game play.

With more time, a s wegepoewouldbhavembeantexplBred) dswalagaeld r i evi n

degree coned IR sensor near that region to detect
retrieving area a great deal and would not increase the navigation difficulty by increasing turning radius
since it could be at different heights from Gbot"’

Alternatively, the onavay-valve and a slope from Gbot could have been explored so that Rbot deposits
the ball when it drivese into the slope, with the ballifadl down the other side of the slope into Gbot.

3.2 Sub-system Level
Implementation of the Electronech subsystem will first be explained, followed by the circuitry sub
system, and lastly themicroprocessosub-system.

3.2.1 Electro -mech subsystem

The design of both robots were dimensionally constrained by the store bought chassis kits, as it was the
very first components acquired. This resulted in a space conscisigndef all subsequent parts, not

limited to just electro/mechanical components. A figure of the chassis used for both robots is shown
below.
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The chassis measure 13cm X 17cm. Components were constructed with this as a basis. Construction of
the stock chassis presented no difficulty, as M2 nuts/bolts were provided as well as threaded spacers.
This also made attachemt of custom parts easier as there were many hole/gaps on the chassis itself.

For parts of a specific shape, one that cannot be store bought. Such-Bsackét, 3D printers at

Gerstein Science MAD lab were used to facilitate construction. Dimensenesmeasured beforehand

and designed on AutoDesk Inventor software. These files were easily exportable to .stl and fed into a
Replicator 2 3D printer. Challenges arose when attaching these parts, but were easily mitigated through
the use of nut/bolts in @anjunction with hot glue.

Because of the accuracy with which the parts were printed (~1mm), many components were fabricated
exactly, and those that did not work were sanded or drilled into to make attachment easier. This means
most challenges were to fiha way to attach components suitable to their function.

3.2.1.1 Attaching Components

Whil e most component were able to attach through
required holes on the chassis where there were not any. The drillingesEtholes is not difficult, the

challenge arises in keeping the structural integrity of the frame intact. As we learned once that a power

drill generates too much torque for the brittle frame to support, thereby snapping it. Holes were then

drilled at lowspeed with the rotary tool from then on.

3.2.1.2 The ball retrieving m echanism

As shown in previous pictures, the Rbot wuses a sc
serval to pen the ball in. This system was easily constructed out of stock parts available from the

machine shop, and quickly attached usbajsa wood and hot glue. In manually driving the robot into a

hopper we first found that the scoop was too sloped and pushed balls out, this was adjusted by bending
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the sheet metal more. However, in ball transfer, the less sloped scoop gave the batitksisap
energy, and made transfer from Rbot to Gbot inconsistent

32134EA AAlI1l OOAT O&AO 1 O OEAT AOGEAEA

To transfer the ball, we took upon our initial experience of using a circuit wire laid across the floor to act
as a potential barrier to accept balls but keep them inside. This idea has worked well with the minor
modification of the barrier size through ing twine(seeFigure 3)instead of wire. When Rbot open the
gate, the ball rolls down the slope, over the potential barrier and is kept in place for Gbot to lift it. In
testing manually this mechanism worked consistently, however upon playing ayatheboard, we

noticed the slight slope of the gameboard counteracted the kinetic energy given to the ball by our
sloped scoop, resulting in a few missed balls

Figure31t A QG dzNB 2F ol as 2F tAFTG YSOKLI yammivgbrisfehoxatkinedydnd dstiaS ¢ LJdza K S N.
cause of jamming marked by blue star.

3.2.1.4 The ball lift mechanism

The main actuator of the lift is a chain driven by@¥motor. As the chain rotates, one link has attached
a mount that connects to a broom bristle/foam assembly which pushegdfieip a WSube structure
comprised of 3 dowel pieces and 2 3D printe8tdckets. Construction was facilitated by accessto a a
aluminum C cross sectioned tube. Main difficulty of this mechanism arises during activation of the lift,
when the bristle/foampusher is just about to reach the ball; the ball jams due to the angle of the force
being appliedgeefigure 31). This was quickly resolved by attach more bristles to the foam at a
perpendicular direction, thereby pushing the ball into a more favorable position before the pusher
applies most of the force.

3.2.1.5 Possible improvements

From gameplay experience, ourteanshar ef | ect ed t hat a critical point
ball transfer between Rbot and Gbot. The mechanisms described above is sensitive to errors in position

and angle. A better transfer would have more tolerance of these almost certain eAdditionally,

instead of using the stored potential energy of the ball, to consistently transfer the ball regardless of the

level of the board we would implement another servo in place of the scoop, and actively push the ball

when desired. A more drastahange, would be to combine both robots into one, entirely nullifying the
handshake issue.
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In construction, we would first consider the necessary components that would be in the robot, then
make an informed decision about the shape and size of the chadsgietrospect, using stoflgought

kits limited our scope of investigation unnecessarily, as a custom frame can be built to support more
components or mechanisms that were ruled out by the small frame.

3.2.2 Circuitry Sub -system

This section will summarize the component testing and justify why the sensors on the final robots were
chosen. Some of the difficuds will be explored in the component selection section. Finally potential
improvements to the circuitry will also be discussed

3.2.2.1 Component Selection
This section will summarize the component selection process for the following sensing tasks:
1 Sensing lines on the game field
1 Sense if robot has gameball
1 Sensing distance from game waltt§Gt)
1 Sensing ball played in game board

Sensing lines on the game fidl

Two possible sensors were considered for use when detecting lines on the game field. The first was an IR
Proximity SensoMishay TCRT5000) and the second was a photoresistor with an LED. Their advantages
and disadvantages are summarized in the table below

Table7 Advantages and disadvantages of the IR proximity sensor and Photoresistor for detggame lines

Sensor IR Proximity (TCRT5000) Photoresistor

Advantages  Very large difference in reading betwee! Able to detect red line
black lines and white board (~8@@0 vs.

~200300 for Photoresistor) Slightly cheaper (LED + 7mm
Photoresistor is about 15 cents cheape
Sensor contains both emitter and than IR proximity module)

detector, easier to mount and position
Filters can be used to enhance detecti
of specific colors

Disadvantages Unable to sense red line Less significant change in readings for

black line and white board

Filters cannot be used to adjust detectic

of specifc colors Very susceptible to changing ambient
lighting conditions. Adding LED reduce
but does not eliminate effect

More difficult to mount (LEDs must be
mounted next to Photoresistor)

Rbot’' s primary method of I|Iine detection uses thre
our heading. However, it also has a Photoresistor (with an LED) to detect the central red line to update
its position on the gameboard. Wéase to us IR proximity sensors as the primary method of detecting
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lines because they were more reliable than the photoresistors. They provided a larger change in
readings and were not susceptible to external lighting conditions. Shiome Was doing mosof the
driving and required the more accurate navigation system, we decided to use the more reliable sensors.

On the other hand, @ot used one photoresistor and LED to detect game lines. Sk Bould

constantly be near the board, redline detectiotas extremely important for its navigation system.
Therefore, the photoresistor was used. Only one photoresistor was used because the ultrasonic range
finders were providing additional information regarding the position and heading of the robot.

Sense if robot has bl

Both Rbot and Gbot have to successfully completigs task. Rbot senses if it has collected the game

ball from the hopper and ®ot senses if the ball has been successfully transferred. Three sensors were
identified as candidates for this task: IR Emitter/Receiver pair82TURE/LTRI208), IR ProxinytSensor
(TCRT5000), and Lag#notoresistor pair. The advantages and disadvantages of each sensor
combination is described in the table below.

Table8 Advantages and disadvantages of the IR Emitter/Receiver pair, IR Proximity Sensor, andRlageresistor
combination for detecting if the robot has the ball.

Sensor IR Emitter/Receiver pair (LFR IR Proximity LaserPhotoresistor
3208E/LTRI208) (TCRT5000)

Advantages  Very large change readings even Easier to position, Very easy to reposition
when emitter/receiver very far only one module and detect if problem is
apart. Readings change by 1000 with both emitter misalignment
(for both black and white balls), and receiver

separation was 5 inches No concerns about Reliable readings,
misalignment / change of about 500 for
calbration black and white balls

when separation is
about 5 inches
Disadvantages Difficulty to accurately position  Ball must be very ~ Very small range where

and recalibrate because light close to IR proximity system works because
beam not visible for reliable readings light from laser is so
Cannot easily tell if problem is (< 1linch) focused, not robust
misalignment Very small change il

readings between
ambient and black
ball

Both Rbot and Gbot used the IR Emitter/Receiver pair for detecting if the robot has the game ball. They
were chosen because they were the most robust system that could reliably detect lacthdnd white
game balls
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Sensing distance from wal
This task is specific tolidt and was used when navigating to the game board to ensure correct
positioning. Two candidate sensors were considered for this task: bumper switches and ultrasonic range
finders. The advantages and disadvantages of both seasersummarized in the table below

Table9 Advantages and disadvantages of bumper switches and ultrasonic range finder tecti¢he distance from the wall

Sensor

Bumper Switch

Ultrasonic Range Finder

Advantages

Disadvantages

Binary data from bumper switch is easier t
process
Most reliable data, no forms of interferenci

Does not provide information above is this
part of the robot sufficiently close to the
game board

To integrate with navigation, would most
likely require driving into gameboard,
causing wheel to slip, making navigation

Continuous data from ultrasonic
range provides more information (ex
heading)

Nicely supplements navigation by
providing information regarding
position and heading to update
internal position

More complicated to use data input
from Ultrasonic Rangerkier

Could give readings very different
from internal position

Susceptible to interference from
other Ultrasonic Range Finders

much more unreliable

G-bot used the ultrasonic range finders to determine its position from the game wall and gameboard
because it was the best fit with our navigation system, and provided us the most information about our
position

Sense ball playing in gameboar

This was the most difficult task for component selection and finding adequate sensors became an
obstacle. Ultimately, two sensors were given significant consideration for this task: IR Proximity sensors
(TCRT5000) and Lag#motoresistor combination. The advantages and disadvantages of both are
described in the table below

Table10 Advantages and disadvantages of the IR Proximity sensors and LRsetoresistor (with filter) combination for
sensing a ball being played in the game board.

Sensor IR Proximity (TCRT5000) Laserphotoresistor (with filter)

Can detect both white and black balls
with a significant (difference ~16200)
Robots in the background should not b
an issue (determined in a controlled
testing environment)
Disadvantages Can barely detect black balls falling, More expensive, approximately twice

difference of approximately 30. the price of IR Proximity sensors

A robot in the background would provid False posities on gameboard

similar readings to a black ball falling, n

robust/reliable

Advantages  One unit, mechanically simpler to
implement

Very clearly detects white balls falling
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G-bot used the Lasephotoresistor combination because it gave the more reliable results. However,
outside of the controlled environment, on the gam
played

3.2.2.2Posdble Improvements and Alternate Component Selection

For the first three sensing tasks described and analyzed previously, the sensors worked reliably and
were able to be successfully integrated with the design. Therefore, alternate components would not be
selected for these tasks. However, the fourth sensing task was not completed reliably by the sensors and
therefore is an area for possible improvements where alternate components should be considered. One
type of sensor that was not tested but would havhkigh likelihood of being successful would be
mechanical switches that would activate when a fall ball hits them. This mechanical solution would be
able to reliably sense a ball falling. However, it would also introduce additional complexity because it
would prevent Gbot from being able to navigate between different columns on the gameboard. To

solve this, a servo could be used to rotate the column. In one orientation, the mechanical switches
would be pointed away from -Bot, towards the game board, whila the other the switches would be
pointed downwards, allowing the robot to drive back and forth between columns

3.2.2.3 Changes during implementation
This section will summarize the changes made to the circuitry during Implementation and briefly justify
each clange. The changes forlit are listed below:
1 One of three DC motors was changed to a servo motor.
Justification: change in design for ball collection
1 Sensing lines on the gameboard: Photoresistors to IR Proximity Sensors
Justification provided previous8/2.2.1
1 Reduced Hbridges from 3to 1
Justification: 2 DC motors can be controlled vialdrilge to reduce costs (no tradeoff in
performance), one DC motor was changed to servo motor which requirestmiolgre
1 Added emergency stop button
Justification: Safe practice, constraint
The changes to-Bot circuitry are listed below:
71 IR Proximity Sensors changed to Laser and Photoresistors (with filter)
Justification: Provided earli€.2.2.1
1 Added IR emitter/receiver pair tdetect when ball is transferred
Justification: Provided earli€.2.21
1 Reduced Hbridges from 3to 1
Justification: 2 DC motors can be controlled vialridge to reduce costs (no tradeoff in
performance), other DC motor controllethvmofset transistor (loose ability to reverse motor
but not important for functionality)
1 Added emergency stop button
Justification: Safe practice, constraint

3.2.3 Microcontroller sub -system:

3.2.3.1 Debugging framework
Internal position was crucial to communicating between the gameplay and correction systems, as well
as between behaviour layers inside the gameplay system. To effectively test out any behaviour, a
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debugging framework allowing visualization of position wexgiired. This challenge was met by using
Processing, which allowed easy integration with Arduino as it communicated via COM ports (same as
Arduino), and produced easily readable maps such as fRibelow.

Each cycle is plattd as a dot with the colour representing the active layer, allowing for easy tracking of
motion in conjunction with serial printing.

rendezvous ‘o
initial
r:l W.2
LC)
& & @ 4
’*’_"J:.
start initial
waypoint 1

Figure32 Debugging map of an experimentation run with the returning path (path 3) being the shortest path to rendezvo
with various active layers labelled.

Another dimension of debugging is testing out each small component in isolation. Individual debugging
programs for optickencoders, IR sensors, sonathiitige drivers, PID controllers, gate opening, ball
lifting, ball sensing, and boundary avoidance allow better tracking down of bugs. Each can be found in
the debug directory under Arduino.

3.2.3.2Changing Environment

The IRand photoresistor sensors are sensitive to environment factors such as lighting levels, which

changes with both time and position. In addition, the power supply likely diminishes over time, lowering

LED brightness. This is an especially large proble@foot * s sensor bar. The sol u:
when given the opportunity by measuring the highest and lowest values over a time period (by default

59) and taking the threshold dsw + (highlow)*THRESHOLD_TOLERANCE for each sensor, where a

threshold blerance of 0.5 would mean the average of high and low values.

Gbot calibrates its sensor bar whenever it is stationary and about to lift a ball, so as to calibrate as close

to when an expected deviation was expected as possible.

44| Page



3.2.3.3Key Challenges

The largest challenge was correcting for drift error from wheel slippage and imperfect measurements,
which created lage errors in heading and led to internal position being off by one-gidvhich point
correction cannot bring the robot back to its actual position until the red line is hit.

By default, Rbot selects the shortest path between the waypoints, and tiaiteorovides the fastest

way to play the game, it does not lead to good opportunities for position correction. The solution is to
allow human input on the sequence of waypoints: all routes are plotted by a human controller at the
start of the game duringhe 3 minutes after the hopper configuration has been shown by clicking on a
map user interface in Poessing, as shown in figud2 above The waypoints for paths 2 and 3 are the
same, but are arrived at in reverse of each other, with some modifictdidarget types of the last

target.

A human can very easily select paths that would lead to easy passive line correction, staying away from
intersections and sharp angles near lines. This solution is much easier and robust than programming in
automated selection criteria.

On the other sidef the abstraction spectrum, the other key challenge was having the desired speed

and angle translate into physically convergent behaviour. Oscillations often occurred where the previous
cycle’ s target angle and speed overturned.
Thiswas solved by progremi ng i n dampening factors in simulatio
trial the factor would be multiplied by 0.9 such that the magnitude after each cycle converges to O.

Timed pauses in the form bfrd_break(activating_layer, cycles_to_brealdre also added before and

after turning in place as that is the most likely failure point for creating drift error.

Another challenge was keeping track of all the behaviour layers, their interactions, and how the position
correct system interacted with thenA total of 3207 lines of library code was written for Rbot and Gbot
combined, the size of which by itself becomes a challenge to manage. The solution to this was to use
version control in the form of git, with commits allowing flexible reverts in cagaerent change made
significant detriments to the system. Keeping access points in one place also lowered the complexity
significantly- having the position correct system communicate only by correcting position and heading,
leaving all the speed and aegtontrol to behaviour layers, keeping all processing after arriving at a
target to thewaypointfunction, and inside each behaviour dealing with how to control for speed and
angle independently.

3.2.3.4Possible improvements

Considering how much time the ngation system required, a simpler, less versatile navigation system
could have been pursued. This would have led to earlier debugging of other components and
integration. Line following with a simple sensor bar would have likely worked adequately, amdgett
the ball from the corner hoppers could have been explored.

Overall, too much complexity was attempted, which while successfully met, took too much time to
implement and resulted in not enough time to test the integration.
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4. Project Management

4.1 Project Schedule: Revised Gantt Chart
12-ian 26-jen 09-Fets 23-feb 06 -\Mw 25N O8-apr
Budd Chasis (EM) .
megerte -lindge/tncoder (EM COOE -

mpiement 710 contray/odomerry (cooe) |

Build ball intake Sweep with SensorAll)

¥=plement line detection(CIAC, COOE) ===
Prototype MrerEM) l _- o . . J
Butld 2nd chassisizm) l
Build Liftitm) |
inplement Odomety, and Uit (CODE. CIRC) _

ntegroting IR with 2nd chassis (ALL)
Repeat ODdometry/Une Detection (ALL)
Bulld game state sersor bar (EM, CIRC)
Integrate senzor Into 2nd chassis (ALL

Garme Algorithm/T esting (CODE)

ntegrate Craats |CRE)

Teat /Debdug 2 robots togetheALL)
Fefinement/Robustness bulldinglalt)
Integrate Sonar System(AlL)

Improving Navigation System|ALL|

Figure33 Actual Project Schedule.

Some things of note are the reduction in individual tasks such as creating electromechanical parts or
soldering circuit s stdothe exteRsiDBAOf integratiomtasks (green) whith cont r a
involved all 3 roles. A longer than expected task was creating a reliable navigation framework. This

involved the design and execution of new mechanical parts, circuits, and programs. This is rbffected

the long green bar at the very bottom. And, though not apparent in the chart, creating navigation forced
some tasks, such as testing 2 robots, refining robustness, to be delayed until navigation was at a state
where the robots could navigate consistént

4.2 Division of Labou r

Tablel1 Division of Labour for AER 201.

Role Electromech work done Circuits work done Microcontroller work done
Electromech -Fabrication and -Soldering and -Helping debug some
assembly of components debugging of some  programs
and robots components

-Mechanical design
ideation to solve new
problems
-Implementing new
mechanical solutions
Circuits -Mechanical design -Planning and -Improving robot behavior
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ideation to solve new executing final PBC  with ideas for new programs
problems board scheme

-Soldering circuits

-Testing and selecting

sensors to be used

Microcontroller -Mechanical design -Soldering and -Design and execution of C+:
ideation to solve new debugging of some programs
problems components -Improving robot behavior

with new programs
-Debugging programs
using self created debugging

frameworks
4.3 Budget
The final budgefor the two robots is $239.23 dollars. Prices are summarizégppendix BReceipts
included in external file folder “Receipts”

5. Conclusion

From the beginning, our team wanted to design a unique 2 robot solution to the problem. We hoped the
final design would etmody our values of simplicity, robustness, redundancy, and speed. And our designs
of the ball intake, ball lift satisfied our desire for simplicity, while precise odometry supported by passive
line detection and range sensors gave our robots redundangasioh systems. Having two robots

working semiparallel to each other also made the whole system work faster together as a whole, for
they each worked independently.

We’ ve seen all of the above factors whbhenRbotng i n ou
managed to retrieve balls from the middle hoppers, which few teams aimed to do. The robustness of

our navigation system meant our robots could get stuck and slip for a bit with no divergent

consequence. In all our rounds until we were suddesath eliminated, our two robots always played at

least 1 ball.

However, there are some crucial stages along the process without which our system would not work.

We had not anticipated the inconsistencyybogf the Db
nor had we thought that we might play 2 rounds with the most challenging hopper configurations,

where a 5mm error in position could mean a successful transfer or Rbot hitting a hopper pillar.

Nevertheless, our team was overjoyed at seeing our 2 robot system working together to place a ball into

the game board. After the competition, we reflected upon all the design choices we should have

considered in depth, such as the choice to use store bbalgassis that is convenient but constrains the

di mensions we could work with. Perhaps a better u
would help us recognize these type of mistakes. In the future, our team will try to better understand the
problem more from the other members' points of view, and hopefully act and think in unison to prevent

any error one member may commit.
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Appendices

Appendix A: Engineering Drawings of 3D printed parts, name of parts in title
block on lower left .
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Appendix B: Budget and Bill of Materials
Table12 Complete list of materials used
Item Quantity Cost Source
Sauder 1 $2.00  Active Surplus
Tape 1 $1.00  Active Surplus
Filter 1 $0.50  Active Surplus
Sainsmart Mega (blue) 1 $32.00 Amazon
Sainsmart Mega (blue) 1 $28.00 Amazon
DC Motor 5 (4 from $3.58  Project Kit
kits)
IR Proximity Sensor (TCRT) 3 $3.23  Creatron (look for receipt with 10
TCRT sensors
Breakbeam Sensors 4 $7.25 Digikey
Photoresistor 9 $18.81 Creatron
H-Bridge 2 $9.00  Project Kit
Resistor ~34 $1.70  Project Kit
Pushbutton 2 $0.50  Project Kit
Red Buttons 2 $3.39  Active Surplus
PCB Protoboard 2 $8.02  Creatron
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Laser Protoboard 1
Diode 1
Mofset Transistor 2
Battery Snap 2
Pin Holders 2
3 Pin Holder 1
4 Pin Holders 2
Lasers 7
Ultrasonic Range Finders 1
Ultrasonic Range Finders 1
Servo Motor 1
IR Sender/Reciever 2
LEDs 6
Chasis Kit 2
Wiring 1
Batteries (9V) 2
Batteries (AA) 8
Elevator (includes dowel piece, chain, 1
and sprockets)

3D Printing 1
Sensor Bar (Materials) 1
Robot Total

$0.68
$0.25
$3.00
$0.56
$0.32
$0.44
$0.95
$8.40
$3.24
$6.00
$7.00
$3.16
$3.00
$42.20
$7.00
$5.27
$6.88
$8.48

$11.87
$0.56
$239.23

Home Hardware
Project Kit
Project Kit
Creatron
Project Kit
Creatron
Creatron

Ebay

Amazon
Amazon

Project Kit
Creatron
Project Kit
Canada Robotix
Home Hardware
Canadian Tire?
Canadian Tire?
Miscellaneous

Gerstein Science
Active Surplus

Appendix C. Power Draw of LEDs, Photoresistors and Phototransistors.

The LEDs, Photoresistors and Phototransistors are all connected to +5V and ground via a

resistor that is in series with it, as shown below.

LED

sv +

T

§ 2200

Let the resistor in series have the valMe , and let the LED, photoresistor or ghtransistor have
the valueY . Since the resistors are in series, the overall resistance can be described by
Y Y . The current through the resistond circuit element is given 5§ -—. The total

Power Drawn can be foundingd @ O

§) W O

(1)

VW

VW

vw
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Therefore, we use an upper bound estimate of the power drawn by each component by usirabe p
that would be dissipated by the resistor without the circuit element.
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